前言:中文期刊網精心挑選了運籌學在經濟學中的運用范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。
運籌學在經濟學中的運用范文1
關鍵詞 運籌學實驗教學 教學模式 實驗內容 實驗考核
中圖分類號:G712 文獻標識碼:A
1引言
運籌學是一門應用科學,在我國管理百科全書中的定義為:“運籌學是應用分析、試驗、量化的方法,對經濟管理系統中人力、物力、財力等資源進行統籌安排,為決策者提供有依據的最優方案,以實現最有效的管理”。它是一門定性分析與定量方法相結合的綜合應用科學,廣泛應用現有的教學方法、軟件技術和計算機等工具,解決實際中提出的專門問題,為決策者選擇最優或較優決策提供定量依據。
國內高等院校運籌學課程最初主要開設在數學等理工類專業,比較注重讓學生掌握運籌學的原理和模型算法,對學生的數學水平和邏輯推理能力要求很高。 但對于財經類專業學生來說, 開設運籌學課程的目的主要是要求他們了解運籌學理論的主要思想,并能靈活運用運籌學方法去分析和解決財經管理中的實際問題。而實驗教學正是能夠充分體現這一教學目標,同時也是實現這一教學目標的重要手段。抓好運籌學的實驗教學意義重大。
財經類專業的學生與一般理工類專業學生的學習模式和習慣都有較大差異。傳統運籌學在建立、求解模型的過程中不可避免地要進行復雜的運籌學理論的證明以及算法的講解,這很容易使得一些財經類專業的學生產生畏難心理,喪失信心,失去學習動力。
因此,在運籌學理論教學過程中引入實驗教學,在強調運籌學基本理論、方法教學的同時,增設上機實驗內容,可以突出學生利用運籌學思想分析問題、利用計算機作為工具來解決問題的能力培養,真正體現從管理實際出發,把運籌學看作一種解決實際問題的方法來學習。
運籌學實驗教學可以讓學生應用所學理論方法解決本專業相關問題,在應用中理解消化吸收理模型與算法,培養學習熱情和進一步鉆研的興趣。通過實驗教學,可以使學生能夠運用運籌學的思想、原理、方法去分析和解決實際工作中存在的大量最優化問題,有助于提高學生獨立解決實際問題、管理決策及科研能力。
因此,實驗教學對于財經類專業學生學習并掌握這門課的基本理論方法和技巧有重要作用。
2財經類專業運籌學實驗教學普遍存在的問題分析
在實際教學過程中,高校財經類專業運籌學實驗教學普遍存在共性問題,運籌學課程強調“定量與優化”,對于財經類專業還需要強調“理論與實踐相結合”、“理論與專業知識”相結合,但是目前運籌學課程實驗教學過程中對這些特點的把握仍略顯不足,歸納起來有以下幾點:
2.1課程教學模式單一,實驗教學重視程度不夠
運籌學的教學方法仍然停留在傳統的粉筆加黑板板書或幻燈片播放的模式上,教學內容主要是對于概念的解釋、定理公式的的推導證明、手工計算分析,運籌學的數學推理成分很重,對于運籌學的應用及分析問題、解決問題方法的講授偏少,缺乏實踐性環節。這樣的教學模式雖然有利于學生掌握運籌學各分支的基本理論,基本模型以及模型求解方法,但是忽略了運籌學模型“來自實踐、用于實踐”的學科發展脈絡,忽視模型方法以及結論的經濟學管理學解釋,由于缺乏實際問題建模分析應用的實驗教學過程,學生在學完后缺乏應用運籌學解決專業問題的興趣和能力,最終運籌學課程的價值沒有得到充分發揮。
2.2實驗教學內容古老陳舊單調,缺乏吸引力
目前的教學實踐中,雖然一些教師認識到實驗教學的重要性,并設計了一些實驗教學內容,但是實驗的內容往往古老陳舊,不能與當前社會生產生活的實際緊密結合,缺乏新意和吸引力。另外由于財經類專業學生計算機基礎差異較大,缺乏通用的實驗教學軟件和實驗教材,教師往往只能根據學生素養,就低不就高,只能介紹比較簡單的優化軟件去處理較為抽象簡單的問題。實驗教學內容單調乏味,使得學生做實驗應付差事,把題目中的參數輸入應用軟件,得到了結果,并不分析模型和結果的應用價值和實踐意義。
2.3 財經類專業運籌學課程課時偏少,無法擠出足夠的實驗時間
財經類運籌學教材以講述理論為主,需要高等數學、線性代數與概率論數理統計為其基礎,對數學基礎要求較高,而財經類專業文理兼收,學生的數學基礎差距較大。如果對于基礎理論的講解過于粗陋,學生對于復雜有難度的模型必然不知所云,很難理解思想精華,因此,理論講解如果大幅壓縮時間則不可能有良好效果。財經類專業運籌學課程的學時通常只有48學時或者32學時,大部分教師在課時如此之短的狀況下,只有壓縮實驗教學時間,甚至只能要求學生課下自己動手學習軟件和進行相關實驗。
2.4運籌學實驗教學考核存在困難
財經類專業運籌學實驗課的成績不容易考核,這是實驗教學開展困難的阻力因素之一。目前的教學實踐缺乏對于學生學習效果的一套客觀、細致、公平的實驗考核標準。尤其是對學生解決綜合的復雜優化問題能力的考核,是運籌學實驗教學的一個難點問題。
綜上所述,財經類專業運籌學實驗教學中的這些現實問題,嚴重影響著運籌學實驗教學的效果,限制了對學生分析、解決實際問題能力的塑造。
3關于改進財經類專業運籌學實驗教學效果的探討
3.1對教學大綱再設計,重新修訂課程教學內容,因材施教,增加實驗教學時間
運籌學作為一門解決優化問題的基礎課程,涉及到線性規劃以及對偶理論、動態規劃、非線性規劃、圖論與網絡、排隊論、存儲論、決策分析、模擬與預測等問題,內容龐雜而且難度較大。而財經類專業學生普遍存在數學基礎不牢,計算機操作應用能力較弱的特點,因此,必須在教學大綱上面要進行縝密的設計,分類教學,對于不同學時的課堂,結合學生基礎和專業需要,合理安排理論講授內容,例如,對于32學時課堂,在講解單純性方法的理論前提時,只要說明思想即可,減少證明時間。最終目的是在保證理論教學效果的條件下擠出必要的實驗教學時間。
3.2更新實驗內容,提升學生動手解決專業實際問題的能力
興趣是最好的引導,要讓學生認識到課程實驗對其專業學習以及未來工作的作用。教師可以結合運籌學前沿,介紹一些最新的發展動態,使學生認識到自身專業的最新發展大多都廣泛地運用了運籌學的工具,激發學生動手采用運籌學模型方法解決專業問題。
具體到實驗內容,第一要考慮到大部分財經類專業學生計算機基礎較差,計算機軟件的使用以及編程能力較弱,因此要結合學生實際采用不同的優化軟件來教學。軟件教學,使教師在課堂教學中可以簡化一些復雜的理論推導過程,節省課時,改善教學互動,并專注于學生解決問題能力的培養。根據筆者的教學實踐,根據不同計算機編程基礎的學生可以采用管理科學家、EXCEL、lingo、matlab等不同的軟件。第二,驗內容分為教師演示引導和學生操作兩類。教師引導實驗以介紹優化軟件基本操作和經典理論模型求解為主,學生操作實驗以進行與其專業相關的實際案例建模分析為主。第三,成立運籌應用小組,筆者實際教學中,組織學生以3-4人為一組,引入大型復雜的優化建模,并要求撰寫數學建模報告。該形式促進了學生處理復雜問題的能力,鍛煉了團隊合作精神,從而為將來工作學習中解決實際高維復雜問題打好能力基礎。
3.3實驗教學考核形式多樣化、評價指標要具體可行
筆者教學實踐中考核方式主要有軟件應用、經典模型軟件求解、大型復雜優化問題建模等部分。軟件應用主要考核語句語法操作以及編程熟練程度,經典模型軟件求解主要考核將理論模型解出并進行經濟學管理學專業解釋。大型復雜優化問題建模主要考核學生綜合運用運籌學模型的能力,考察解決實際問題的模型抽象、數據提取、模型求解、模型應用的綜合能力。每一個部分都要提交實驗報告,最后歸總打分確定實驗成績。
本文受到中南財經政法大學實驗教學項目“運籌學實驗課程教學中外比較研究”資助。
參考文獻
[1] 胡運權.運籌學教程(第四版)[M].北京:清華大學出版社,2010.
[2] 呂一兵.信息與計算科學專業運籌學教學改革研究[J],教育教學論壇,2013(3):91-92.
運籌學在經濟學中的運用范文2
[關鍵詞]卓越計劃;運籌學實驗;數學建模
[中圖分類號]G64 [文獻標識碼]A [文章編號]1005-6432(2012)41-0145-02
1 引 言
卓越工程師教育培養計劃(以下簡稱“卓越計劃”)是為貫徹落實黨的十七大提出的走中國特色新型工業化道路、建設創新型國家、建設人力資源強國等戰略部署,貫徹落實《國家中長期教育改革和發展規劃綱要(2010—2020年)》實施的高等教育重大計劃?!白吭接媱潯本哂腥齻€特點:行業企業深度參與培養過程、學校按通用標準和行業標準培養工程人才、強化培養學生的工程能力和創新能力。力求培養一大批面向工業世界、面向世界、面向未來、適應經濟社會發展需要的高質量各類型工程技術人才。而高校是實施“卓越計劃”的主要陣地,在“卓越計劃”的推進過程中加強專業課程改革是十分必要的。
管理運籌學的飛速發展為各個行業把握管理大型組織的復雜性提供了一套十分重要的工具。這些工具集中了世界的各個邊緣的知識,其中包括數學、統計與概率論、計量經濟學、電機工程甚至生物學。這些外來的技術,如線性規劃、排隊論、自動控制理論、博弈論、動態規劃以及信息論,正在幫助解決各個行業中的實際問題。
因此,在管理運籌學教學中應針對所要解決實際問題的要求和其面臨的客觀環境條件,作出假設分析,抽象為數學模型,然后應用相關的數學知識加以解決。這就要求問題解決者要知識面廣、邏輯思維嚴密,這對于非數學專業,特別是經管類專業學生實在過于困難,因為,由于受到學時限制,經管類專業學生對高等數學、線性代數、概率與數理統計等先修課程學的比較膚淺,沒有或很少經過數學嚴密的邏輯思維方面的訓練,而且經濟管理類專業學生是文理科兼收,有相當一部分學生在數學方面的課程普遍底子較差,這客觀上就給運籌學教學帶來很大困難。因此,為使經濟管理類學生能正確全面地掌握各級管理中已被廣泛應用,且發展較成熟的最優化理論與方法,并能恰當運用解決實際管理工作中的各種最優化問題,有必要針對經濟管理類專業學生的特點和運籌學課程的性質,進行運籌學教學方法的改革。
2 運籌學在數學建模中的應用
管理運籌學在數學建模中有著廣泛的應用,多年來許多數學建模競賽中都涉及運籌學的相關內容。
首先介紹一下圖與網絡在數學建模中的應用,通過“奧運場館周邊的MS網絡設計方案”這個例子來說明其應用。假定奧運會期間每位觀眾平均出行兩次,一次為進出場館,一次為餐飲,并且出行均采取最短路徑。測算題目中20個商區的人流量分布。首先將建模結構圖轉化為無向賦權圖,并鑒于該圖的對稱性,通過設計一種特殊的流量計算方法對傳統的Dijkstra算法進行改進;其次,用MATLAB編寫求解最短路的應用程序,可以得到任意兩點間的最短路徑,進而得到觀眾出行的最短路徑和所經過的商區。
接著通過“彩票發行方案的優化設計模型”這個例子來說明決策論在數學建模中的應用。設計一種“更好”的方案,據此給彩票發行部門提出建議。對此問題,可根據效用理論中存在著主觀概率,以及彩票信息在人群中的傳播效應,建立主觀概率意義下的優化模型。但這個模型是較大規模的非線性規劃模型,用窮舉法求解比較困難,可采用模擬退火算法來求解,用MATLAB編程實現。
3 結合數學建模改進教學方法
3. 1 更新教學觀念,充分重視實驗教學
結合數學建模在教學中增加實驗教學,以提高學生解決實際問題的能力、培養學生的觀察和動手能力為宗旨,有利于培養學生的創新意識與創新能力。在今后的教學中,統籌安排課時,根據教學進度合理安排實驗教學時間,力求在完成每一知識點的學習后安排一次實驗。實驗內容將從實際問題出發,突出本章節的基本原理與基本方法,教師進行監督與指導,有助于學生對理論知識的掌握與理解,同時學生的實踐能力得到鍛煉,自主學習能力得到提升。
3. 2 分級教學
從學生實際出發,因材施教是將幾乎處于同一水平的學生放在一起分別教學的一種教學手段。這種教學體系,根據學生的個體差異,按照不同科目的不同學習能力的高低將學生群體劃分成不同的級別或層次,有針對性地進行分班教學。有效的分級教學,能使教師節約精力突出重點積累經驗,能讓學生盡可能地在各自的最近發展區得到充分的自由發展,謀求各個層次的學生都能獲得成功的體驗,促進學生的素質得到全面提高。所以說,分級教學是建立在以學生成才為本理念基礎上,為實現教學目的的一致性和教學過程的互異性所進行的重要實踐,因材施教是分級教學的核心思想。在運籌學教學過程中,也可采用分級教學,培養學生對運籌學的學習興趣,進而培養數學建模人才。
3. 3 適宜的教學方法
近幾年來,由于擴招,生源的擴大,學生基礎參差不齊。因此,教師應根據學生具體情況,精心設計教案,調整教學內容、次序和教學組織方式;盡量從學生感興趣的實例出發,引入正題,以引發學生學習興趣,吸引學生注意力,使之能更好地掌握理解所學知識,并能恰當運用解決實際問題。
傳授新知識時,教師講授的時間不能過長,內容不能過多,節奏不能過快,并要將基本概念、基本原理在不影響教學效果的情況下,分散介紹,使學生易于接受;否則,教師的講授將是無效的講授。運籌學課程內容多、邏輯性強且抽象,需要學生理解掌握。因此,課堂上教師的板書一定要簡潔、條理清楚、重點和注意事項突出,并要求學生養成做筆記的良好習慣,以便于課后溫習理解和掌握。
3. 4 量體裁衣,突出專業特色
實驗教學中實驗內容是反映教學目的載體,豐富的實驗內容可以激發學生的學習熱情和拓寬知識結構。因此,實驗內容的選擇要“量體裁衣”。面對知識面較廣的商學院學生,要想上好運籌學并凸顯其實用性,教師需具備充分的定量和經濟管理學知識。例如,庫存模型通常將需求區分為固定和相對復雜的隨機兩類,當學生對需求滿足特定分布的假設產生疑惑時,教師就應當能夠適時介紹需求數據的獲取及利用統計學軟件對其分布加以判斷的方法,這可加深學生對運籌學交叉性的理解。
4 結 論
隨著科學技術的進步及“卓越計劃”的深入推進,需要對運籌學課程的建設持續探索與實踐,不斷完善教學方法與教學內容,提高學生的學習興趣,激發學生的學習熱情,真正意義上實現運籌學作為經濟管理類專業核心課程應有的重要作用,并鍛煉學生的動手能力,培養學生的創新意識與創新能力,以滿足創新教育的要求。
參考文獻:
[1]教育部. 教育部啟動“卓越工程師教育培養計劃”[Z].
[2]韓中庚. 數學建模競賽——獲獎論文精選與點評[M].北京:科學出版社,2007(5).
[3]劉智,汪妍. 管理運籌學教學的思考[J].高師理科學刊,2011(4):83
運籌學在經濟學中的運用范文3
關鍵詞:博弈論;本科;教學改革
中圖分類號:G642 文獻標志碼:A 文章編號:1673-291X(2012)22-0251-02
現代經濟學、管理學的最新發展中有一個引人注目的特點,那就是博弈論在經濟學和管理學的教學、科研以及在社會各個層面的應用中受到越來越多的重視。所以,許多高校的經濟與管理專業都與時俱進地將《博弈論》作為本科學生的一門必修課程。然而,由于《博弈論》發源于運籌學,對數學理論的要求較高。盡管博弈論中許多案例(例如“囚徒困境”、“性別大戰”等)具有較強的趣味性,但一旦從形象的案例講解轉入到抽象的理論推演,學生難免會遇到較大的學習困難。因此,如何使學生既掌握基本理論又能夠加以運用,就有必要對大學本科階段的《博弈論》課程從教學內容和方法上進行深入的探討。
一、博弈論課程的教學特點
1.教學過程通常淺入深出。談及博弈論,人們往往會想到“囚徒困境”、“田忌賽馬”等經典案例,這使得博弈論的內容顯得比較生動,也易于吸引人們的注意力。因此,通常博弈論的教學會以簡單的案例分析為切入點,以激發學習者的興趣。但隨著講授內容從純策略的納什均衡分析,逐漸向合作博弈、演化博弈、重復博弈等較為復雜的博弈分析過渡時,往往會涉及到一些較為復雜的數學定理和推演方法。這使得博弈論的教學體現出淺入深出的特點。
2.需要較好的數理基礎。早期,博弈論又被稱為對策論,它是現代數學的一個新興分支,也是運籌學的一個重要組成部分[1]。因此,經過科學抽象化的博弈理論,一般采用嚴謹的數學語言來進行表述。例如,對問題的描述是以集合的形式表達,對關系的刻畫是以函數形式表達,并通過嚴謹的數學證明得到最終的結果。這需要本科生在此前具有較好的高等數學、數理統計和運籌學基礎。
3.應用范圍廣泛。由于真實的社會中存在各種各樣的矛盾沖突,使博弈理論可用于經濟、政治、外交乃至戰爭等廣泛的領域。博弈論可以將生活中的經濟現象進行數學的抽象,并通過嚴謹的數學推導,揭示該經濟現象的發展趨勢和可能產生的最終結果[2]。例如,演化博弈理論,有助于理解生物種群之間的進化行為;信號傳遞原理,有助于理解軍事中的策略互信行為;委托—理論,有助于理解勞動力市場的抉擇問題以及二手車市場的交易問題。
二、博弈論教學中存在的問題
1.案例支撐還不夠豐富。博弈論的教學必須以案例作為引導,這需要課程案例具有以下特征:(1)案例必須緊密聯系現實;(2)案例要能充分體現一方面的博弈思想;(3)案例需具備一定的參與性,使學生通過情景模擬的方式深刻地感受到博弈的法則。盡管在博弈論的教學中已經累積了一定量的案例,但仍顯得不夠豐富。特別是對于經管專業的本科生而言,需要把理論的學習融入對經濟活動實踐的研究和認識之中,以提高學生分析經濟現象以及解決經濟問題的能力。
2.數理推演比較枯燥。博弈論中的數理推演較為復雜。國外學者普遍認為,要理解博弈論的數學精髓,那么測度論、隨機過程、實變函數與泛函分析、數學分析、拓樸學等知識是非常必要的[3]。例如,在納什均衡存在性的證明,就需要用到Katutani不動點定理[4]。而現在許多高校經管專業本科生都是文理兼招,由此導致學生的數學功底不一。因此,教師講授難度較大,學生也不易理解。
3.實驗與實踐教學重視不夠。博弈論實踐性較強,需要運用實驗教學手段來使學生作為直接利益主體參與決策,并引導他們分析博弈結果背后的內在驅動機制,從而達到幫助學生理解知識和提升學生解決問題能力的目的。但是,許多學生受傳統“填鴨式教學”的影響,參與的積極度有限;同時,實驗教學的重要性也有待于進一步認識和深化。這使得實驗與實踐教學不充分,即使學生掌握了理論模型,也難以用于實踐,導致“學”與“用”脫離。
三、互動式教學的應用探討
從上述分析可見,將互動式教學引入博弈論課程具有鮮明的意義。第一,通過親身參與,有助于學生理解博弈基本思想;第二,有助于學生掌握理論模型,并促進學與用的結合;第三,有助于活躍課堂氣氛、提高教學效率。筆者在博弈論課程中,嘗試性地進行互動式教學探索,主要包括以下幾個方面:
1.盡可能地為博弈論中的基本思想尋找可供學生參與的游戲。例如,運用“猜數字”游戲來呈現重復剔除劣勢策略的思想、運用“山地攻守戰”游戲來講述共同知識的含義、運用“模擬選舉”游戲來分析中間人選民定理。在實際教學中,筆者通常會按照既定游戲規則讓學生分組參與,并記錄下游戲過程和結果。而在對博弈結果進行歸納和分析時,還往往采用情景再現的方式,讓學生體會博弈中的奧妙,進而加深對理論的理解。
2.提升學生參與的積極性。這就需要任課教師深刻理解博弈的主要內容,恰當地設計游戲規則使得其趣味性更強;同時,需要賦予一定的游戲獎勵,來提高學生的參與熱情。①教育是一個興趣導入的過程,然后才成為科學獲知的一部分。要在一堂課里面始終吸引學生的注意力并不容易,這就需要教師合理掌控行課節奏,使趣味教學貫穿于課堂進行的始終,而不是頭重腳輕。通過合理的實踐教學安排,使學生感到博弈論的學習,是在“玩中學、樂中學”的氛圍中進行的。
3.注重思想傳授,淡化數學推演?;邮浇虒W的目的,在于讓學生理解博弈論的重要思想,能夠運用該思想去分析一些現實問題。對于一些較為復雜的數學推演,只是簡單介紹其基本過程,② 而將其內涵的思想融入互動式教學,引導學生運用知識來解決現實問題。
運籌學在經濟學中的運用范文4
關鍵詞:《物流經濟學》;教學方法;物流管理教學
中圖分類號:G642.41 文獻標志碼:A 文章編號:1674-9324(2014)52-0152-02
《物流經濟學》作為高等院校物流管理專業的一門基礎理論必修課,應用經濟學的相關原理和基本方法分析了物流活動過程的各個環節,將物流現象融入經濟學的體系進行剖析。通過對物流經濟的基礎知識和基本理論的介紹,逐步引導學生熟悉、了解和學會利用物流經濟學的理論、原理、分析方法以及相關工具,對物流市場的需求與供給、服務水平與效率、主要物流活動環節進行經濟分析,對物流績效和創新效益進行評價,并能夠對物流資源進行合理選擇和配置。進而培養學生能夠做到自覺運用物流經濟學的相關知識去解決物流活動中的經濟問題。對夯實學生的物流理論基礎,提高日后在工作中分析、解決問題的能力具有重要意義。在我校該課程為40學時,主要講授的內容由物流需求與供給、物流服務與效率、運輸經濟分析、庫存經濟分析、物流設備經濟分析、物流成本分析、采購經濟分析、物流績效評價、物流制度與政策以及逆向物流與綠色物流等幾大部分構成[1]。由于課程講授內容相對較多,如果仍舊使用傳統的授課方式勢必會造成學生的學習興趣降低,影響授課的效果。因此,有必要根據課程和相關章節的內容結合學生的學習習慣,設計不同的教學方式。
一、注意用經濟學的方法分析物流問題
《物流經濟學》本身就是用經濟學的視角和研究方法對物流體系的一種分析和解讀。因此,在教學過程中要特別注意引導學生采用已經掌握的一些經濟學理論去分析物流現象、解決物流問題。例如:在物流需求與供給這一部分中,可以引導學生分析不同類型運輸方式對應的競爭環境和市場類型,如陸運市場由于準入門檻低、參與者眾多、價格透明,因此屬于完全競爭市場。進而可以讓學生在此基礎上運用微觀經濟學中價格彈性的概念分析陸運市場的需求與供給價格彈性,分析如何達到完全競爭環境下的供需平衡,并提出自己的觀點。當然,在講授過程中仍要注意強調物流本身的特點,例如物流需求的派生性質、物流供給的不可存儲性等。希望可以通過教師的引導讓學生在掌握物流特點的基礎上,學會自覺地使用已有經濟學理論去分析物流問題和現象。
二、強調方法論在物流管理類課程中的作用
目前在國內物流管理專業的很多課程里對物流體系的講述仍然停留在使用文字描述現象的層面。雖然這樣的方式可以保證大部分的學生可以理解和接受,但是對于物流理論體系的分析和揭示作用是非常有限的。因此,在授課中應該更強調數理方法在物流管理中的作用。由于本課程內容中有大量內容需要使用,運籌學、技術經濟學等方法進行研究和討論,因此在本課程的講授中教師應該在對基本方法論內容進行詳細講解的基礎上,大膽鼓勵學生使用這些方法對物流問題進行深入分析。例如:教師可以在對資金的時間價值以及復利計算進行細致講解的基礎上,引入技術經濟學中常用的凈現值法等項目評價技術,讓學生對一些物流投資項目從技術經濟性角度對項目進行分析評價。再如:教師可以在對決策樹、風險型決策方法、動態規劃等運籌學的理論進行回顧的前提下,鼓勵學生運用這些方法對物流管理中的一些決策問題如物流設施改擴建、物流設備等進行精確的理論分析。
三、教學過程中注意將經典理論與相關的最新研究動態相結合
物流理論具有典型的后進性,即理論體系的提出和發展遠遠晚于物流現象的出現。由于物流理論的發展時間有限,而且物流運作中新的問題和現象又層出不窮,如果要求學生使用一些經典理論去解決現實中的新問題可能會存在一定的困難和偏差。因此,在教學過程中在講授一些基本的經典理論方法的同時,更應該更多地結合現階段物流管理的新問題和最新的科研成果,培養學生養成主動接受最新的研究理論,并使用其解決物流運作中出現的新問題的習慣和能力。例如:在物流績效評價以及供應商選擇兩部分教學內容中一些主流的如打分法、成本比較法等簡單的方法,雖然學生很容易接受,但在實際應用中難免會出現偏差甚至嚴重的失誤,因此可以在教學中將研究中常用的層次分析法、模糊綜合評價法等理論性與實用性都較為出色的方法傳授給學生。同時,可以引導學生對上述理論方法進行整合,討論基于這兩種方法的綜合評價手段。為將來科學地展開工作打下一定的基礎。此外,對科研感興趣的學生還可以進一步指導他們去學習如TOPSIS、DEA等更深層次的理論,為將來進入研究生階段學習培養興趣。
四、明確學校主要的服務對象和領域,教學內容應該更多地融入本地化特色
大學培養的人才是否優秀,一個主要的標準在于培養的學生是否適合企業尤其是本地企業的需要,這也正是大學服務于地方的主要表現。因此,在教學過程中除了公共知識之外,教師應該更強調與學校所在地緊密結合的一些內容。以海南大學為例,為了配合海南省建設和發展國際旅游島,在本課程的教學中相應加入了逆向物流和綠色物流部分,在強調物流的經濟效益的同時努力做到環境破壞的最小化、社會效益的最大化。此外,為了突出本省熱帶農業經濟的發展,進一步擴大特色農業在全國的優勢,在運輸和庫存管理部分除了常規的教學內容外,加入了冷鏈物流基本運作的相關知識介紹,為畢業生可以無縫服務于當地產業創造條件。
五、教學中更多地引入試驗教學方式,做到理論與實踐相結合
雖然我校的物流管理專業是一個新辦專業,但通過了解和學習其他院校該專業的辦學經驗不難發現。物流管理專業的培養除了對學生的理論素養和學習能力有較高要求外,對于學生的實際操縱和動手能力同樣看重[2]。因此在課程的講授過程中,在進行課堂理論學習的同時,應該更多地加入實驗教學,依托我校新建的物流管理實驗室,可以對配送中心的進出庫、移庫、分揀、包裝等作業環節以及零售行業的物流體系進行實地模擬。在增強學生對上述具體操作流程的理解以及實際動手能力方面可以帶來極大的幫助,為學生就業后盡快進入角色奠定了扎實的基礎。
六、將案例、游戲帶進課堂教學,在活躍課堂氛圍的同時培養學生的主動參與意識
《物流經濟學》作為一門物流專業的理論基礎課,在授課內容上偏重于理論、方法的學習和應用,但眾多的理論分析勢必會使課程晦澀難懂,因此將案例、游戲帶進課堂教學,對于活躍課堂氛圍是很有必要的。尤其在庫存經濟分析部分,如果只是一味地推導經濟訂貨批量(Economic Order Quantity,EOQ)、安全庫存等理論的數學公式,一定會使學生的學習興趣降低,影響教學效果,可以在進行上述理論教學的同時引入“啤酒游戲”等游戲環節,通過學生的自主參與,加深其對于訂貨批量、安全庫存、牛鞭效應等理論的理解和應用,在活躍課堂氣氛的同時,培養學生的主動參與意識。此外,在講授例如供應商管理庫存(Vendor Managed Inventory,VMI)等相對抽象概念的時候,可以通過引入如家樂福等知名企業的案例進行說明,不但可以激發學生的學習興趣,還可以幫助學生理解概念和理論,也可以使他們知道這些理論如何使用,從而增加學習的目的性[3]。
七、構建學生的自主學習模式,強調學生在教學過程中的作用
自主學習模式,是指學生在教師的科學指導下,通過能動的創造性的學習活動,實現自主性發展[4]。對于課程中一些如物流制度與政策等內容,如果只是教師一味地講授,不但枯燥,也很難引起學生的注意和興趣,自然也不會取得好的教學效果。此時,可以更多地采用學生自主學習的模式,在教師給予一定引導的基礎上,充分發揮學生的主觀能動性,對課堂進行反轉,往往會事半功倍。但需要注意的是,采用上述模式并不意味著放松對教師的要求,反而需要教師在上課之前要充分了解學生的情況,充分了解學生對于相關課程的知識需求,并關注學生的學習興趣。
八、建立靈活多樣的考核形式,從不同側面考察課程學習效果
上述教學方式在教學過程中更多地引入了研究性理論知識,更多地運用了案例、實驗、自主學習等教學手段,對于學生的考核也應該擺脫傳統的試卷考核的形式,而應該結合教學的實際情況建立由論文、課堂表現(包括自主學習表現、案例討論、游戲參與等環節的表現)、實驗課成績以及平時測驗構成的靈活多樣的考核體系,從不同側面考察課程學習效果,在保證學生學習積極性的同時也充分體現考核的公平、公正。
上文是筆者在《物流經濟學》教學過程中的一些體會與思考,需要指出的是這些教學理念、方法和手段并不是一成不變的,應該充分結合不同教學內容、學生群體以及前期知識儲備等情況進行適當調整并不斷創新。
參考文獻:
[1]舒輝.物流經濟學[M].北京:機械工業出版社,2009.
[2]蔣麗華.“三贏模式”物流實踐案例教學法的基本原理與實施策略[J].物流技術,2012,31(10):188-192.
運籌學在經濟學中的運用范文5
1.1工程系統分析的步驟
系統分析作為決策者的一個有力工具,對決策者改善政策、制定質量以及實施有效領導等方面有重要影響,其基本步驟如下:
(1)明確目標:在進行系統分析時,第一步要做的就是對系統和系統范疇進行明確定義,清楚了解系統的環境以及系統各個組成部分之間的關系等;接著就是對反映系統行為、性能或者性狀的數據進行大量采集,選擇相應的評價標準和評價指標,對現有系統的性能和狀態進行定性描述和定量評價時,通過數據分析的利用加以實現;完成評價后,應該調查并預測現有系統當下和將來的需求,并與現有的系統實際狀態和使用系能進行類比,進一步使得現有系統存在問題的內容和范圍都有所確定。根據這些分析依據來對現有系統開展價值分析,討論后確定接受度高且實現性強的系統整改的目標和目的。
(2)可選方案的提出:按照系統的問題和所定的目標及目的對多個可能的方案進行可行性分析和篩選,多次進行系統分析和系統評價,從眾多改進法方案中篩選出可行性較高的方案。
(3)選擇方案的分析評價:在上一個步驟中已經完成了各項方案的分析,因此這時應該依據按照表征系統的行為、性狀和特征模擬所得到的一個或數個模型細致的技術、經濟政治可行性分析,對系統實施后的各種狀態進行計算分析。
(4)方案的選擇與決策:完成系統分析后,系統分析員需要將結構化分析結果用概述的形式傳給決策者,說明評定指標和標準,表明系統目的和目標的確立依據,提供可行的參考方案并對各方案實施的效果進行比較分析,在討論中系統分析員可以提出自己的一些建議和看法。
(5)方案實施和反饋:系統分析結果的驗證是在確定方案實施過程中和結束后需要進行的基本步驟,驗證的結果是分析方法和分析選用參數修整完善的基本依據,后期新方案和性政策推薦可以以此為構建基礎并適時推出。
1.2城市道路與交通工程系統
道路與交通工程的規劃、設計、修建和后期運作管理是城市道路與交通工程系統分析的主要對象。這些問題的基本特征與微觀經濟概念預測法、系統分析方法論、技術優化、決策理論等相結合就是實現資源優化配置和最佳方案的選擇的依據基礎。城市道路與交通工程龐大而復雜,投入甚大,各管理部門的資源優化配置和最佳解決方案的選擇是工程系統分析工作的主要內容。
2模型的建立與運行
模型是將系統和問題的全貌以立體直觀的方式呈現給決策者的一種工具,通過直觀的呈現各種問題來加強決策者的決策能力,在城市道路與交通工程系統的分析過程中模型是必不可少的。模型的一個重要作用就是使分析員能夠根據具體模型來分析各種各樣的變量、因素以及關系之間是如何相互依賴、相互作用的,通過分析來推測可能對系統產生影響的各種行為、性狀、性能等,進一步對方案的效果進行評價,對方案進行必要的完善。所以,模型的建立是城市道路與交通系統分析的重中之重,其建立和運行步驟如下:初步設計、根據現有數據初步證實、通過模型預測新情況、根據實際偏差改進模型。
3城市道路與交通系統分析的主要內容
3.1線性規劃與圖論
線性規劃是運籌學中的一個分支,運籌學會通過運用圖解法、人工變量法、單純形法等求解方法來將所分析的問題具體呈現出來。通常情況下,使用線性規劃有兩個目的:一個目的是根據任務要求,采用最省資源的方式完成工作;第二個目的是根據被限定的資源,采用最佳方案經濟有效地完成任務。同時,作為運籌學另一個分支的圖論則是以“圖”的形式來反映龐大而復雜的工程系統以及管理問題,其最優結果通過數學方法求得。通過情況下,要分析完成某項任務的最少時間、最省費用、最短距離等,都可以通過圖論的方法來進行。
3.2網絡技術
這里所說的網絡技術跟我們日常生活中所理解的網絡技術不同,作為圖論的一個分支,其主要的表示方法有箭線圖和順序圖,主要工作第一步是對承接的工作展開項目分析,并依據分析結果繪制出與預期要求相符的網絡圖,若通過分析繪制得到的網絡沒有達到預期要求目標,分析人員就可以結合時間、資源、費用等因素的影響對原圖進一步調整優化,以達到最終的滿意效果,在施工組織和施工計劃管理的過程中往往會用到網絡技術。
3.3預測與決策
預測與決策是兩個不同的概念,預測是以某件事物的歷史資料為依據,采取科學的方法和邏輯推來對該事物的發展趨勢進行預測分析,并對估計結果進行客觀評價,然后再調對人們的行動進行調節引導;而決策則是指在眾多可選方案中選擇出可行性最佳的執行方案。
3.4技術經濟分析與評價
在道路工程中,在可行性研究階段需要用到技術經濟評價,技術經濟評價是對成本和效益動態計算并最終得出定量評價依據的一種手段,所采用的研究方法包括有工程經濟學的理論和方法,通過分析來說明某個方案的優劣。
4結語
運籌學在經濟學中的運用范文6
近年來,隨著大學數學課程教學改革的不斷深入,各類院校在微積分等基礎課的講授過程中,越來越重視理論知識傳播與實際問題求解的結合。這種教學方式的變化,一方面將較為抽象的數學概念置于某些具體情景之下,賦予其特定的物理學或經濟學等含義,有利于學生理解和對照;另一方面,通過在數學課程中獲得的邏輯思維和數值計算訓練,有利于學生在后續專業課程的學習中,更有效地運用數學工具對具體問題展開量化描述和分析。因此在經濟管理學科的許多微積分教材中,都加入了與導數、極值等數學定義相對應的邊際、彈性等經濟學概念的章節。一些學校在教學過程中還將數學建模和數學實驗課程與現有的數學教學內容融合起來,充分調動學生的積極性,使數學理論得到了更深入的運用。特別是隨著數學軟件在基礎數學課程講授中的使用,進一步豐富了教師的教學手段,也增強了學生在學習過程中的興趣,大大提高了微積分等課程的教學效果。
1 MATLAB在微積分教學中的應用
數學軟件的發展和更新,使其在微積分課程教學中的應用愈加簡便。目前最為常用的數學軟件有MATLAB、Maple和Mathematica。此外還有一些針對不同數學分支開發的專業軟件,例如用于統計問題分析的SPSS和SAS,用于解決規劃等運籌學問題的LINGO等。在本科生的微積分教學中,MATLAB、Maple和Mathematica都是可選擇的操作便捷的軟件,而MATLAB則是運用最為廣泛的軟件之一。①
MATLAB是美國MathWorks公司出品的數學軟件,使用MATLAB可以分析數據、開發算法、創建模型和應用程序。MATLAB強大的數據處理能力,可以幫助教師和學生在微積分課程的講習過程中,更為直觀地理解基本概念。特別是利用該軟件的圖形處理和動畫功能,可使數學課程中數與形的結合在教學實踐中表現得更為生動。
例如,在學習微積分的過程中,學生常常會遇到諸如和等不太熟悉的初等函數。利用MATLAB的作圖和動畫功能,可以幫助他們形成對這些研究對象的圖形認知,進而通過圖形的變化幫助學生理解伴隨著函數自變量趨近于無窮或趨近于某一定點的過程,函數值呈現出無限接近于某一確定數值,或函數值無限增大,或函數值無規律變化的動態特征,加深他們對極限這一微積分中最基本的概念的直觀感受,并能使學生更準確地區分無界變量、無窮大量以及沒有極限的變量等概念。②
又如,在有關常微分方程章節的教學中,可利用MATLAB軟件的微分方程求解函數dsolve和ode等,講解演示可分離變量方程、齊次方程和一階線性方程的求解原理和解析解,同時還可以繪制出上述方程的解曲線和相空間曲線。利用MATLAB的方程求解和作圖功能,既可以避免學生在學習過程中機械地記憶求解相應方程的步驟,又能通過可視化的圖形幫助他們了解在描繪實際問題時,微分方程模型中不同參數的具體含義,以及各個參數的變化會引起的解的變化情況。
2 教學實例
下面,以經濟管理學科類微積分教材中經常所舉的局部市場均衡問題為例,說明MATLAB軟件在微積分教學中能夠發揮的輔助教學作用,以及如何通過該軟件的使用讓學生加深對數學模型的理解,進而培養學生運用數學思維和方法描述和解決實際問題的能力。
經濟學中在討論市場中某一產品的需求、供給以及價格之間的關系時,若能分別對三者建立可量化的函數表達式,則可借助數學工具來分析它們的變化及伴隨的市場現象。局部市場均衡是探討獨立市場、單個商品的價格與供求關系變化的一種方法,它假定在其他條件不變時,一種商品的價格僅取決于自身的供求情況。當該商品的需求價格和供給價格一致時,稱此價格為均衡價格,這時商品的數量亦被稱為均衡數量。③
例 設需求函數為 = (),供給函數為 = (),其中為商品單價。線性局部市場均衡模型可表示為:
這里需求()和()供給均設為價格的線性函數。解此方程組易得均衡價格為 = ,商品的均衡數量是 = 。由于通常假定>0,并考慮到>0,所以參數、、和還應滿足>0,并稱為超額需求。模型中價格的變化會同時影響供需雙方的變化,使得市場始終在平衡的打破和建立中動態演化。
在教學中我們可通過選取不同的參數取值在同一坐標系下繪制供求曲線,幫助學生更加直接地觀察局部市場均衡狀態與模型中各參數的依賴關系(如圖1所示)。在此基礎上,可進一步探討價格調整模型。
若假定商品的初始價格恰好是,則市場已處于均衡狀態。然而一般情況下,≠,這樣市場如由不均衡欲達到均衡則須經過一定的調整。在市場調整過程中,價格可視為時間的函數,即 = ()。通常而言,價格變動由市場需求和供給的相對力量支配,可設在時刻時,價格()的變化率總是與此時的超額需求成正比。于是,建立微分方程模型來刻畫價格的變動: = ()
圖1 線性局部市場均衡模型
其中>0,是調節系數。
聯立上述微分方程模型與局部市場均衡模型,得到價格調整的動態均衡模型:
此處和均為時間的函數。將和的表達式代入微分方程中,整理可得一個一階線性微分方程: + () = ()。
由一階非齊次線性微分方程的通解公式可得該方程的通解為:() = [() + ] = + 。
其中為任意常數,為均衡價格。由初值條件(0) = ,可得 = 。記 = (),將價格調整模型的解表示為() = () + 。因和都是常數且>0,于是當→+時()→0。借助MATLAB將與不同大小關系下的價格曲線繪制在同一圖像中,可幫助學生發現隨時間推移()向均衡價格趨近變化的過程。具體而言,若 = ,則()= ,即市場處于均衡,價格是常數;若>,則當→+時,()小于趨于;若<,當→+時,()大于趨于(見圖2)。
圖2 價格隨時間的調整變化
3 結束語
MATLAB軟件在微積分教學中的運用,能使抽象的數學理論圖形化直觀化。在經濟管理類的相關課程學習中,能將經濟學概念和數學語言相互貫通。在教學實踐中,教師可以充分運用該軟件的各項功能豐富教學手段并幫助學生學以致用。
注釋
① 薛定宇,陳陽泉.高等應用數學問題的MATLAB求解(第三版).北京:清華大學出版社,2013.