前言:中文期刊網精心挑選了對人工智能的思考范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。
對人工智能的思考范文1
【關鍵詞】人工智能 超級計算力
一、引言
(一)問題提出
人工智能作為下一代技術發展的趨勢,其方向也是眾多科技界人士關心的問題。很多科學家預言,人工智能不僅僅是人類技術突破的下一個階段,而且更是人工智能的發展潛力必將超出人類的控制,成為新一個物種,甚至可能替代人類,“統治”地球,我們抱著研究的目的,來探討人工智能技術發展的方向與途徑。
人工智能技術的發展對大多數人而言,是渾然不覺,全無概念的,但是從近年來各大科技公司的戰略與產品上看,人工智能的確已經成為當下科技界爭奪的戰略制高點,蘋果的Siri語音助手,谷歌的無人駕駛等單向的人工智能技術已經非常成熟,而大量的科技公司正在投入巨大的精力與財力進行研究,可以預見,在不久的將來,人工智能技術必將成為人類生產生活領域中廣泛應用的技術之一。而對其進行發展脈絡和規律的判斷與估計也是十分必要的,也是順應技術趨勢,推動技術創新的必由之路。
(二)目的與意義
一方面,對于科學研究來說,繁重的科學和工程計算本來是要人腦來承擔的,如今計算機不但能完成這種計算,而且能夠比人腦做得更快、更正確,因此當代人已不再把這種計算看作是“需要人類智能才能完成的復雜任務”,人工智能這門科學的詳細目標也天然跟著時代的變化而發展。這些創造力以各種數學定理或結論的方式呈現出來,而數學定理最大的特點就是:建立在一些基本的概念和公理上,以模式化的語言方式表達出來的包含豐碩信息的邏輯結構。這種途徑是數學賦予的,是普通人無法擁有但計算機可以擁有的“能力”。從此,計算機不僅精于算,還會因精于算而精于創造。我們可以將這樣的學習方式稱之為“連續型學習”。本質上,這種方法為人的“創造力”的模式化提供了一種相稱有效的途徑。
另一方面,對于人類的生產生活甚至未來來說,人工智能技術的快速發展,不僅會在更大程度上解放人的勞動時間與降低工作辛勞程度,使得人們越來越離不開機器的工作,并且每個人的生活方式發生根本性的轉變,而且,更重要的是,在未來,人類是否會與機器進行深度融合,發展處全新的生命構造體,以此來迭代和進化,實現人類和機器人的和諧共存,還是人工智能會自動發展出自我意識,而在將來的某一個時點,機器人們將會對他們的締造者――人類舉起屠刀,實現自己稱霸的野心,這也不得而知,因此,對人工智能的路徑探討是十分必要和有重大意義的。
二、人工智能發展趨勢
(一)人工智能的準確定位
人工智能(Artificial Intelligence),它是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。 人工智能是計算機科學的一個分支,它企圖了解智能的實質,并生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。人工智能從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智能帶來的科技產品,將會是人類智慧的“容器”。人工智能是對人的意識、思維的信息過程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。
(二)人工智能的發展趨勢研究
1、自我存續。這是一個十分顯眼的要求,人工智能如果作為一個新物種存在,其必須擁有自我生存的能力,即離開人類,人工智能技術必將仍然存在。而且人工智能將與其他物種和環境形成新型交流互動方式。以極端的情況來說,如果人類在將來的某一天消失了,而人工智能必須擁有維持自身生存和發展機制和技術,如果是電量不足,核心機器人將會指揮挖掘型機器再次挖煤,或核能機器人運用核能來發電,以維持自身的正常運轉,而這一切的工作都是在人工智能的機器內部解決,而并不需要人類的參與,這就是人工智能的自我生存功能。
2、自我迭代更新。這是在自我存續的基礎之上發展而來的。一個機器,一代機器的存在可能并不是問題,而要想機器向人類一樣代代繁衍不絕,則對人工智能來說,絕對是一個巨大的障礙。因此,在機器自身的自我繁殖更新迭代,也是必須要進行的過程,這就需要強人工智能的高度運用,來對整個機器人生態進行實時評估,不斷地提出新的發展要求,而且立即組織機器人中的“科學家”對其進行研究與探討,實驗與創造,或者是融入生物技術而與之進行基因式的合作,這些都是不確定的,唯一能確定的是,離開人類的獨立人工智能必須要有發展創造出更新更快更強的人工智能的能力。
3、自我認同。人工智能的自我認同分兩個層面,一方面是對內進行認同,另一方面,是對外進行認同。如果假定人工智能是人類的發展方向,其必須會對人類關心的終極問題等產生同樣的巨大疑惑,比如我是誰?我從哪里來?要到哪里去?宇宙的界限是什么?而且以人工智能的水平來看,它一定不會停留在思考的層面上,而是會進行各種不同的實驗與探索,已驗證自己的猜想。另一方面,人工智能作為一個以理性而存在的物種,其合作是建立在種種規章制度之上,而一旦有機器發現制度的漏洞,就會有進行套利和損人利己的動機,而阻止這種情況的發生,只能是建立在機器人的情感共同體的基礎之上,即是機器人產生同樣的情感,而形成有效率的合作與分工,而不會因為短期利益犧牲長遠利益。
三、結論
由上述探討可知,人工智能的發展道路還是非常漫長而艱辛的。對于其是否會取代人類,這個問題要依賴于將來的技術發展和人類的生命形態的演變而定,而我們對人工智能進行的物種化探討是非常有必要的,也是對人工智能技術的發展和對其風險的防控具有借鑒意義的一個環節,是我們進行科學技術開發的留有的一個客觀冷靜的分析角度。
參考文獻:
對人工智能的思考范文2
Abstract: In view of the characteristics of artificial intelligence curriculum, including abstract content and complex algorithm, and the actual needs of undergraduate teaching, combined with teaching practice, this paper discusses and sums up the teaching reform and innovation of undergraduate artificial intelligence curriculum from the teaching system, teaching content, teaching methods and assessment methods.
P鍵詞: 人工智能;創新;本科
Key words: artificial intelligence;innovation;undergraduate
中圖分類號:G642 文獻標識碼:A 文章編號:1006-4311(2017)22-0230-02
0 引言
人工智能是計算機科學的一個分支,是當前科學技術中正在迅速發展、新思想、新觀點、新理論、新技術不斷涌現的一個學科,其屬于一門邊緣學科,同時也是多個學科交叉而成的一門學科,包括語言學、哲學、心理學、神經生理學、系統論、信息論、控制論、計算機科學、數學等[1]。當前人工智能已經是很多高校計算機相關專業的必修課程,它是計算機科學與技術學科類各專業重要的基礎課程,其教學內容主要包括自然語言理解、計算智能技術、問題求解和搜索算法、知識表示和推理機制、專家系統和機器學習等,國內外很多大學都意識到了其重要性,紛紛對其展開了教學和研究。人工智能課程包含多個學科,具有內容抽象、理論性強、知識點多等特點,且算法復雜,但是多數高校采用的教學方式仍是傳統的課堂教學方式,即“教師講、學生聽”的教學模式,這種信息單向傳輸教學模式以教師為主體,學生只是在被動的接收知識;存在過分重視理論教學,忽視實踐活動教學的問題,導致教育內容無法和社會接軌;人工智能教材理論性過強,學生在學習過程中常常感到枯燥乏味,進而對學習該課程失去熱情[2],久而久之,不僅人工智能課程的教學質量和效果無法達到預期,甚至學生還會產生厭學心理。針對人工智能課程中現有的各項問題,本文作者結合自身豐富人工智能教學實踐經驗,參考人工智能課程特點和教學目標,從多個方面探討和總結了人工智能,包括教學內容、教材選擇、教學方法和考核形式等。
1 教學內容優化與更新
人工智能是一門嶄新的學科。開設本課程首先是確定教學內容。通常來講,人工智能學科的內容包括兩個部分,具體:一是知識表示和推理;二是人工智能的應用。前者是人工智能的重要基礎,后者主要介紹了幾種人工智能應用系統,包括自動規劃和機器視覺、機器學習、專家系統等。另外,課程內容中還包括了一些人工智能應用的實例,將實踐和理論緊密結合起來[3]。
隨著時代的發展和科技的進步,人工智能學科也取得了較大發展?;诖耍斯ぶ悄軐W科也應該與時俱進,更新人工智能教學大綱,進一步完善其教學內容。修訂后的人工智能教學大綱將人工智能分成兩個部分,即基礎部分和擴展應用部分。前者包括計算智能、搜索原理、知識表示等,后者包括智能機器人、智能控制、多智能體、自然語言理解、自動規劃、機器學習、知識工程等。
教學內容的選擇和確定應綜合考慮多項因素,不僅要重視基礎知識,也應注意推陳出新,隨著科技的進步做到與時俱進,同時教學內容應符合現實的需求,能夠與社會接軌,將理論和實踐緊密結合起來,只有這樣人工智能課程的教學質量和效果才能事半功倍。
2 教學策略及教學方法的改革創新
由于人工智能課程具有算法復雜、內容抽象、理論性強、 知識點多的特點,傳統的教學模式已經無法滿足人工智能課程的需求,教師應探索更加有效的教學模式和方法,確保人工智能課程能夠取得良好的教學質量和教學效果。具體的改革和創新人工智能課程的手段和方法主要包括以下幾個方面:
2.1 激發學生的學習興趣 無論是經驗還是常識都在告訴我們每個人最好的老師就是興趣,學生只有對某門學科存在興趣,才會更加主動積極的學習該門課程,從而獲得良好的教學效果。比如,作者在課程的一開始先播放了一段著名導演斯蒂文?斯皮爾伯格的《Artificial Intelligence》的相關片段,由這個電影學生知道了世上存在人工智能的機器人,學生們隨著電影情節的發展而深深感動,與此同時教師讓學生思考和談論人工智能是什么?研究人工智能的意義在哪里?實踐發現,在課堂中加入電影因素,能夠大大提升學生們的注意力,讓學生更加專注在教學任務中,有效提高了學生探索人工智能的積極性和主動性。此外,在教學中還可以用動畫、視頻、圖片等手段將反映人工智能最新研究和應用的成果展示出來,讓學生更直觀的感受人工智能的奧妙,從而投入更多熱情學習人工智能課程。
2.2 面向問題的案例教學法 案例教學法是一種以案例為基礎、以能力培養為核心的一種教學方法[11]。針對學校學生特點,我們采取了以下幾種教學形式實施案例教學。①講解式案例教學:這種案例通過教師的講解,幫助學生理解抽象的理論知識點。案例的呈現有兩種基本形式:一是“案例―理論”,即先給出教學案例,然后再講解理論知識;二是“理論―案例”,即教師先講解理論知識,再給出教學案例;通過情境體驗與案例剖析激發學生認知的興趣,引導學生對將要學習的內容產生注意,有利于教師導入新課。②討論式案例教學:在課程初期將學生分成若干學習小組,每小組3~4人;教師將提前設計好的一題多解的教學案例以及收集的相關資料分配給每個小組,要求學生在課余時間通過自學和組內討論的方式給出問題的不同解決方案。③辯論式案例教學:在課程后期,采取專題辯論的方式對綜合應用案例進行討論,能有效地啟發學生全方位地思考和探索問題的解決方法,加深學生對人工智能的理解。
2.3 個性化學習與因材施教 在開展課程教育過程中應注意對學生進行個性化教學,結合學生特點因材施教。比如,在日常教學中多觀察學生情況,鼓勵那些應對教學任務后仍存在余力的W生深入探索較深層次的課程及相關知識,同時友善面對學習較差的學生,分析其學習過程中面對的困難,有的放矢地采取應對措施,幫助其不斷進步;在教學過程中讓學生以讀書報告的形式多多思考,鼓勵學生發散性思考問題,鼓勵優秀學生進行深一步的探討,并且教師應幫助具有新穎思想或論點的學生將其智慧以科技論文和發表文章的形式轉化為成果。
2.4 注重綜合能力培養 在研究型教學中任務驅動是一種常用的教學方法,其中心導向是任務,學生在完成任務的同時也在吸收和掌握知識。通常來講,該教學方法的步驟是:教師提出任務師生共同分析以得出完成任務的方法和步驟適當講解或自學、協作學習完成任務交流和總結?!盵3]該教學模式不僅有利于培養學生的創新能力和創新意識,還能夠培養學生解決實際問題的能力,提高其綜合實力。不僅如此,由于該教學模式通常是以小組協作的方式進行,教師給出研究范圍,學生自愿結組并選擇具體的題目,經過分析和討論后以程序設計或者論文的形式協作完成研究。由此可知,學生是在以團隊的力量解決問題,這十分考驗學生的團隊協作能力,對于學生團隊合作精神的培養至關重要,且在完成任務的過程中學生需要查閱大量的資料,久而久之學生收集資料和創新能力勢必會得到提升。
2.5 采用啟發式教學 人工智能的很多問題都較為抽象,對學生理解力的要求較高,因此,在實際的教學過程中教師應有意識的就課程內容提出相關問題,讓學生自己獨立思考,鼓勵學生提出自己的想法和解決方案。然后回歸到課程上,對比分析教材上的解決方案和學生自己的解決方案,如此不僅培養了學生獨立思考的能力,也增加了學生參與教學活動的意識,提高了學生的學習熱情。比如,在講到較為抽象的“遺傳算法”時,先提出一個問題,即“遺傳算法如何用于優化計算?”,然后從“達爾文的生物進化論”入手,討論“遺傳”、“變異”和“選擇”作用,之后舉例分析,啟發學生思考“遺傳”、“變異”和“選擇”的實現,最后師生一起導出遺傳算法用于優化計算的基本步驟。如此既完成了教授遺傳算法的目的,也鍛煉了學生邏輯思維的能力,教學效果良好[4]。
3 作業和考核方式的改革創新
過去的課程作業都是單一書面習題作業,發展至今,課程作業形式已經發生了變化,更加豐富多樣,包括必須交給教師評閱的書面家庭作業和不必交給教師的課外思考題目、口頭布置的思考題或閱讀材料以及大型作業等。其中通過網絡就可以完成上交作業,并且教師批閱作業后也可以通過網絡返回給學生,實現了網絡化。課程的考核方式較之以前也發生了較大變化,加強了平時思維能力的考核,更加注重學生實驗能力和動手能力的培養,不再是絕對的一次考試定成績,而是在總評成績中加入30%的平時成績,如此不僅減輕了學生的期末負擔,也迫使學生更加重視平時的學習思考,有利于課程教學質量的提升。
4 結束語
本文是以提高教學質量為目標,結合教學實踐,從教學體系、教學內容、教學方法、考核方式等方面對本科人工智能課程的教學改革進行了探討,總結了該課程在教學和實踐方面的一些教改舉措。這些舉措符合二十一世紀高校教學的要求,可以支持教師提高教學手段現代化的水平,同時更貼合學生的學習需求。作為該課程的授課教師應始終保持對教學內容的不斷更新、教學方法的多樣化,才能激發學生的學習興趣,培養他們的思維創新和技術創新的能力,最終提高本課程的教學質量。從學生的反饋來看,作者所總結的教學實踐具有明顯的教學效果。但仍有許多方面做得不夠,今后將繼續在教學過程中不斷總結成功的經驗,吸取失敗的教訓。
參考文獻:
[1]蔡自興.人工智能及其應用[M].三版.北京:清華大學出版社,2007.
[2]謝榕,李霞.人工智能課程教學案例庫建設及案例教學實踐[J].計算機教育,2014(19):92-97.
[3]蔡自興,肖曉明,蒙祖強.樹立精品意識搞好人工智能課程建設[J].中國大學教學,2004(1):28-29.
對人工智能的思考范文3
關鍵詞:新工科;人工智能導論;實踐教學;校企合作;案例庫
隨著物聯網、大數據、5G及人工智能等信息技術的發展,為了應對中國產業變革及新一輪的科技革命,適應“中國制造2025”國家戰略需要及產業經濟創新發展,同時將國際工程教育思想本土化,“新工科”應運而生[1]。信息技術發展催生出了人工智能相關的專業,國內高校紛紛設立了智能科學與技術專業。近年來,人工智能技術的發展引領著人類社會正逐漸走進智能社會,人工智能將深刻影響人類社會。隨著人工智能的進一步發展,高等教育的價值也將進一步提高[2]。因此,各高校應盡快建立與新工科相一致的智能科學與技術專業,并深入研究我國人工智能的人才培養體系、課程設置、實驗平臺及成果轉化等方法,改革傳統人工智能的教育教學方法,形成有新工科特色的智能科學與技術專業工程教育方法。由于傳統的專業是按學科劃分的,因此,目前的智能科學與技術專業課程體系以理論為主,強調學科知識的系統性和完備性[3]。人工智能導論作為智能科學與技術專業的核心課程,同時也是人工智能“入門性”和“引導性”的課程。但是,目前人工智能導論的課程設置上主要存在課程內容陳舊、實踐課程不足、教材理論過強、教學模式老舊及實踐教學與企業需求不適應等問題。尤其是人工智能導論課程,缺乏實踐教學將會降低學生學習人工智能的興趣和積極性。因此,為了解決這些問題,并使高校跟上人工智能時代的腳步,抓住高等教育發展的新機遇,進行面向新工科的人工智能導論實踐教學模式探索具有重要的現實意義。
1人工智能對新工科人才的新要求
1.1具備多學科交叉知識。人工智能導論是一個多個學科交叉而成的一門課程。人工智能導論主要包括知識系統、智能搜索技術、腦科學、機器學習、神經網絡、支持向量機、專家系統、智能計算及分布式智能等內容[4]。因此,一個合格人工智能專業人才需要具備多學科知識。1.2具備多領域應用能力。人工智能導論的應用領域廣泛,基本包含工業、農業及社會生活的各個行業(如工業生產、通信、醫療、金融、社會治安、交通領域及服務業等)[5]。人工智能導論課程要求學生在學好理論前提下也應該掌握各行業的相關知識,只有這樣才能提高人工智能技術在各領域的應用。1.3具備人工智能創新創業精神。目前,創新驅動發展成為了我國現階段發展的重要力量,人工智能成為經濟發展的新引擎[5]。在大眾創業、萬眾創新的號角下,人工智能技術作為創新創業過程中的一個大趨勢。因此,當今新形勢下培養具有創新創業精神的人工智能專業人才對我國經濟發展及大學畢業生創新創業具有重要意義。1.4具備人工智能人文素養。人的內在品質就是人文素養,人文科學的知識水平和研究能力是人文素養的重要組成部分,人文素養是人文科學體現出來的以人為研究對象和中心的精神[6]。人工智能對人類社會帶來的是便利還是帶來災難,關鍵是使用者的思想道德和人文素養。因此,培養具有人文精神的人工智能專業人才具有重要的意義。
2人工智能導論課程教學現狀
目前,許多高校已經認識到傳統的人工智能導論課程已經不能適應社會和學生發展的需要。尤其是地方普通高校在師資、科研及學科力量薄弱情況下進行人工智能導論的實踐教學。目前人工智能導論的課程設置上主要存在的問題如下:⑴本科生課程內容陳舊。近年來,隨著云計算、大數據、5G等信息技術的快速發展,也帶動人工智能技術發展日新月異。對于高校來說,要緊跟人工智能技術前沿,傳授學生的知識也要緊跟人工智能的發展。目前,雖然也出現了不少新的人工智能導論教材,但在課堂上能夠教學的新內容仍然不多,教材內容仍然集中在傳統的人工智能技術(如問題求解、知識表示、歸結原理及經典推理等技術)上。⑵研究生課程內容重疊。研究生的人工智能導論課程應作為本科生課程的一個延續,但部分高校對研究生人工智能導論課程的教學重視不夠。很多本科生已經學過的內容在研究生階段又進行了重復。因此,在新工科背景下培養高層次的人工智能人才,就必須要在研究生階段加強新工科人才實踐能力的培養,選擇合理的人工智能導論課程,改革研究生階段人工智能導論的教學理念和教學模式。⑶實踐課程不足。實踐教學是提高人工智能新工科人才能力的重要路徑。目前,大多數院校的人工智能導論課程理論與實踐聯系不夠緊密,對學生實踐能力的培養不夠,只知道理論,而不進行實際的實踐應用就不能成為合格的人工智能新工科人才。另外,大多數地方高校的人工智能實驗室建設投入不足,實驗條件差,驗證性的實驗較多,實驗課時不足,學生對人工智能新技術的接觸不夠。⑷人工智能導論教材理論性過強。目前,現有的人工智能導論教材以理論為主,缺乏人工智能實踐內容。在課程教學過程中學生經常會感覺索然無味,當實踐課程開設不足時,這種情況會非常明顯。學生會漸漸的對人工智能導論課程失去興趣和熱情,最終會導致課程的教學質量和效果下降,不能達到新工科人工智能專業人才培養的預期。⑸教學模式老舊。人工智能導論是多學科交叉的課程,課程內容理論性強、抽象、多知識點是新工科的特點。然而,大多數地方高校仍然采用過去的課堂教學模式(即“教師講、學生聽”的教學模式),這種單向灌輸的教學方式以教師為主,學生的主動性不夠,只是在被動接收知識。學校這種重視理論不重視實踐的教學模式,在一定程度上影響了新工科人才的實踐能力,從而導致教學內容與企業社會需求脫節。
3人工智能導論實踐教學初探
3.1人工智能導論課程實踐平臺建設。為了提高學生對實踐教學的興趣,南陽師范學院計算機科學與技術學院在人工智能導論授課過程中廣泛應用多種計算機實驗教學平臺,如采用開源的PaddlePaddle百度飛槳深度學習平臺,希冀一體化人工智能實踐教學平臺及大數據綜合實驗平臺。教師可以在實踐教學過程中方便的使用這些平臺進行授課,學生也可以在課堂中跟隨老師完成相關實驗,并能夠在課下進行相關實驗練習及提交作業。3.2人工智能導論課程實驗內容優化。在人工智能導論實踐教學過程中,以學生興趣為導向,開展相關應用課程實驗,南陽師范學院計算機科學與技術學院對人工智能導論實驗課程內容進行優化。優化后的主要實驗課程包括搜索優化算法實現、智能計算實現、貝葉斯分類實驗、最近鄰算法實驗、機器學習實驗及神經網絡實驗。最后,通過期末課程設計進一步提高學生解決實際問題及創新創業的能力。3.3人工智能導論實踐教學模式改革。⑴校企合作為使人工智能導論實踐教學不與企業脫節,校企合作是關鍵。應積極派遣教師進企業進修,了解企業需求,并提高教師的工程能力。從2018年以來,南陽師范學院計算機科學與技術學院每年暑假期間累積派遣教師58人/次前往百度、中興、科大訊飛、神舟數碼及江蘇傳智播客公司等進修培訓。同時已經在固定時間邀請相關企業講師到學校進行人工智能方面的項目教學。建立起了具有地方區域特色的師資隊伍及校企協調的實踐教學模式,從而避免人工智能導論課程實踐與企業實際脫節。⑵“雙導師”負責制人工智能導論實踐課程實行“雙導師”制,邀請企業中實踐經驗豐富的人才任教或任職,校企合作建立實踐教師指導團隊,改革教學策略及教學方法,以項目為牽引,將人工智能導論實踐課程作為第二課堂學分。還要積極制定人工智能相關的科技作品競賽的獎勵機制,積極引導學生參加各種人工智能相關的比賽,從而進一步提高學生在創新實踐方面的能力。⑶采用案例教學法以案例導入進行教學,提高學生興趣。首先,從人工智能競賽的部分賽事中、(如百度的人工智能大賽,“2020年全國人工智能大賽”,“2020中國高校計算機大賽人工智能創意賽”等)中選取貼近實際問題的案例作為人工智能導論實踐課程的案例來源。然后,采用目前主流的人工智能開發軟件進行算法代碼的編寫,引導學生采用Python語言調用第三方接口庫進行算法的實現。最后,讓學生使用主流的編程語言(如C++、Java等)開發完善算法或進行系統設計與實現。
4結束語
在新工科背景下,人工智能導論作為智能科學與技術專業的基礎核心課程,人工智能人才培養應注重提高學生解決問題的能力。在這種背景下,筆者結合近年來了解到的企業需求和上課的實際,對人工智能導論實踐教學模式進行初探,具體如下:①校企合作,構建人工智能實踐平臺;②建立案例庫,優化實踐的內容;③校企“雙導師”制,采用案例教學,從而進一步提高學生在創新實踐方面的能力。
參考文獻:
[1]楊晴,王曉墨,成曉北等.新工科背景下的新能源科學與工程專業——哈佛大學工科教育在學科交叉方面的啟示[J].高等工程教育研究,2019.S1:23-24,33
[2]李明媚,成希,羅娟.人工智能時代的高等教育之變與不變[J].黑龍江高教研究,2020.2:41-44
[3]陳義明,劉桂波,張林峰等.智能科學與技術專業課程體系建設的理論思考[J].計算機教育,2020.309(9):103-107
[4]劉永,胡欽曉.論人工智能教育的未來發展:基于學科建設的視角[J].中國電化教育,2020.2:37-42
[5]姚琳,石志國.人工智能課程體系與教學方法研究[J].中國大學教學,2019.10:19-22
對人工智能的思考范文4
讀了下面這12個問答,你就會對人工智能的未來發展有一個較為全面的了解。
人工智能的發展包括哪些階段?
人工智能的發展可分為三個階段:弱人工智能、強人工智能和超人工智能。弱人工智能是擅長于單個方面的人工智能,比如“阿法狗”,只會下圍棋。
強人工智能,達到了人類級別的人工智能,也就是在各方面都能和人類比肩的人工智能,人類能干的腦力活它都能干。創造強人工智能比創造弱人工智能難得多,我們現在還做不到。
超人工智能,即超級智能。牛津哲學家,知名人工智能思想家尼克?博斯特羅姆把超級智能定義為“在幾乎所有領域都比最聰明的人類大腦都聰明很多,包括科學創新、通識和社交技能?!背斯ぶ悄芸梢允歉鞣矫娑急热祟悘娨稽c,也可以是各方面都比人類強萬億倍的。超人工智能也正是為什么人工智能這個話題這么火熱的緣故。
為什么說我們正在越來越快地接近超人工智能?
通過觀察歷史,我們可以發現一個規律,即人類出現以來所有技術發展都是以指數增長。也就是說,一開始技術發展是小的,但是一旦信息和經驗積累到一定的基礎,發展開始快速增長,以指數的形式,然后是以指數的指數形式增長。
未來學家瑞?庫茲韋爾把這種人類的加速發展稱作加速回報定律。之所以會存在這種規律,是因為一個更加發達的社會,能夠繼續發展的能力也更強,發展的速度也更快。
李四光也曾經寫道:“人類的發展不是等速度運動,而是類似一種加速度運動,即愈到后來前進的速度愈是成倍地增加?!?/p>
人工智能技術的關鍵難點是什么?
用計算機科學家高德納的說法,“人工智能已經在幾乎所有需要思考的領域超過了人類,但是在那些人類和其它動物不需要思考就能完成的事情上,還差得很遠?!币恍┪覀冇X得困難的事情――微積分、金融市場策略、翻譯等,對于電腦來說都太簡單了。我們覺得容易的事情――視覺、動態、移動、直覺――對電腦來說則太難了。
摩爾定律真的那么有效嗎?
摩爾定律認為全世界的電腦運算能力每兩年就翻一倍,這一定律有歷史數據所支持,這同樣表明電腦硬件的發展和人類發展一樣是指數級別的。我們用這個定律來衡量1000美元什么時候能買到1億億cps(每秒運算次數)?,F在1000美元能買到10萬億cps,和摩爾定律的歷史預測相符合。瑞?庫茨維爾提出的加速回報定理,也就是摩爾定律的擴展定理。
我們什么時候能用上和人腦一樣聰明的電腦?
現在1000美元能買到的電腦已經強過了老鼠,并且達到了人腦千分之一的水平。1985年的時候,同樣的錢只能買到人腦萬億分之一的cps,1995年變成了十億分之一,2005年是百萬分之一,而2015年已經是千分之一了。按照這個速度,我們到2025年就能花1000美元買到可以和人腦運算速度抗衡的電腦了。
我們如何造出超人工智能?
第一步:增加電腦處理速度。這步比較簡單。
第二步:讓電腦變得智能。這步比較難,有三種可能的途徑:一是模擬人腦,二是模擬生物演化過程,讓計算機演化出智能,三是建造一個能進行兩項任務的電腦――研究人工智能和修改自己的代碼。這樣它就不只能改進自己的架構了,我們直接把電腦變成了電腦科學家,提高電腦的智能就變成了電腦自己的任務。
為什么說強人工智能可能比我們預期的更早降臨?
因為,一,指數級增長的開端可能像蝸牛漫步,但是后期會跑的非???。二,軟件的發展可能看起來很緩慢,但是一次頓悟,就能永遠改變進步的速度。就好像在人類還信奉地心說的時候,科學家們沒法計算宇宙的運作方式,但是日心說的發現讓一切變得容易很多。創造一個能自我改進的電腦來說,對我們來說還很遠,但是可能一個無意的變動,就能讓現在的系統變得強大千倍,從而開啟朝人類級別智能的沖刺。
超人工智能為什么會導致智能爆炸?
這里我們要引出一個概念――遞歸的自我改進。這個概念是這樣的:一個運行在特定智能水平的人工智能,比如說腦殘人類水平,有自我改進的機制。當它完成一次自我改進后,它比原來更加聰明了,我們假設它到了愛因斯坦水平。而這個時候它繼續進行自我改進,然而現在它有了愛因斯坦水平的智能,所以這次改進會比上面一次更加容易,效果也更好。第二次的改進使得他比愛因斯坦還要聰明很多,讓它接下來的改進進步更加明顯。如此反復,這個強人工智能的智能水平越長越快,直到它達到了超人工智能的水平――這就是智能爆炸,也是加速回報定律的終極表現。
我們還要多久才能迎來超人工智能?
著名人工智能專家、谷歌公司的技術總監瑞?庫茲韋爾相信電腦會在2029年達成強人工智能,而等到2045年,我們不但會造出超人工智能,還會迎來一個完全不同的世界――奇點時代。
什么是奇點時代?
所謂奇點時代,指的是超人工智能的出現將世界帶入的一個新的時代。在這個時代中,人類將無法預測技術如何發展,因為超人工智能的行為將超出人類的理解能力。
超人工智能可能給人類帶來的最大益處是什么?
永生。在理論上,死亡并非是不可克服的,只不過這需要超人工智能在納米技術和生物技術方面取得我們難以想象的突破。超人工智能可以建造一個“年輕機器”,當一個60歲的人走進去后,再出來時就擁有了年輕30歲的身體。就算是逐漸糊涂的大腦也可能年輕化,只要超人工智能足夠聰明,能夠發現不影響大腦數據的方法來改造大腦就好了。一個90歲的失憶癥患者可以走進“年輕機器”,再出來時就擁有了年輕的大腦。這些聽起來很離譜,但是身體只是一堆原子罷了,只要超人工智能可以操縱各種原子結構的話,這就完全不離譜。
超人工智能最值得我們去擔心的問題是什么?
對人工智能的思考范文5
關鍵詞:人工智能;犯罪主體;刑罰
新事物的發展會對社會原有規范產生沖擊,因此社會規范需要不斷調整來應對這些問題。人工智能的出現對傳統社會規范特別是刑法犯罪主體認定、罪名設置等提出了深刻地挑戰。[1]面對這些刑法應該如何應對值得我們深入思考。
一、人工智能對刑法傳統制度的沖擊
人工智能大致可分為弱人工智能、強人工智能和超人工智能階段。超人工智能在當下來看太過科幻化,我們暫且不在本文中討論。弱人工智能具有超強的運算和學習能力,但只能在人類設定的算法程序下實施著特定動作;而強人工智能除了具備弱人工智能的優點外還可能像人類一樣擁有自主意識。
(一)弱人工智能對刑法的影響
1.弱人工智能對犯罪主體認定的沖擊。無人駕駛汽車造成的交通案件是人工智能對犯罪主體認定提出挑戰的典型代表。無人駕駛技術參與的交通肇事與一般交通肇事在本質上是一樣的,唯一的爭論焦點就在于人工智能可否成為交通事故的責任者。在現行刑法領域內,犯罪都是“人”在實施的,這里的“人”指的是自然人和法人,從目前的刑法條文來看人工智能不是犯罪構成要件中的“人”。[2]無人駕駛汽車可以完全由人工智能來操作,那么在“人”退居幕后的情況下交通肇事的行為是由誰實施的呢?刑法學上刑事主體的歸責原則是“無行為無犯罪”,如今人工智能仍只是被視為高科技產品,違反交通法規并不是它的“本意”。既然其沒有支配行為的意志,將其認定為犯罪主體在目前來看是不合適的。
2.弱人工智能對罪名設置的影響。弱人工智能在現階段仍被視為工具,它在特定程序的控制下“聽命”于人類,這使其很容易被不懷好意之徒利用而成為“得力”的犯罪工具,但是由于人工智能的類人化特點使其與傳統的犯罪工具相比大相徑庭,例如有人利用人工智能進行在現階段應該如何定罪呢?我們發現現行刑法并沒有針對這種行為的罪名設置,根據罪刑法定原則無法對其定罪。
(二)強人工智能對刑法的影響
1.人工智能對主體責任判斷的沖擊。強人工智能可能像人類一樣擁有自主意識而被賦予主體資格獨立承擔刑事責任,而刑事責任的承擔需要分析積極因素和消極因素兩個方面,積極因素包括罪過(故意、過失)、目的等,消極因素包括責任阻卻事由等,所以說刑事責任的判斷是需要分析主體的主觀意識的。而主觀意識往往是不可觀的,在傳統犯罪中我們可以通過客觀行為判斷出主體的主觀意識;而強人工智能體的算法邏輯和人類的思維邏輯可能是完全不同的,也就是說我們無法通過客觀行為來判斷它的主觀意識,那么在這種情況下我們該如何判斷人工智能的主觀意識呢?
2.人工智能對刑罰制度的影響。人工智能從本質上來講是由特定程序控制的計算機。鑒于人工智能心智和形體可分離的特殊性,一旦被賦予刑事主體資格,在人工智能觸犯刑法時要規制的是控制它行為的特定程序,而不是該程序的外在載體即計算機。因此我們對人工智能適用刑罰時,重點是如何限制其程序的自由或者剝奪其程序的生命等。簡單的切斷電源、斷開網絡或者單純地限制人工智能形體的自由,并不能達到規制人工智能的目的,因為人工智能的程序是由預先輸入的命令語句所決定的,以上措施可使人工智能體暫時無法工作但是其內在特定程序并未改變,在接通電源和網絡或者解除對其自由地限制后很難保證其不會犯同樣的罪行。
二、人工智能時代刑法的制度重構
(一)刑法對弱人工智能階段所產生問題的回應
1.刑法關于弱人工智能對犯罪主體認定帶來的沖擊的回應
以無人駕駛汽車造成的交通肇事案件為例,按照“無行為無犯罪”的傳統刑法規則原則來看,似乎傳統意義上的肇事者已經“難覓蹤跡”了。[3]筆者認為,可以從如下方面來應對人工智能對犯罪主體認定帶來的沖擊:
(1)以交通肇事罪追究無人駕駛汽車使用者的責任。在無人駕駛汽車的行駛中,雖然無人駕駛汽車主要靠車內智能駕駛儀來實現車輛的行駛,但這并不是說免除了使用者的一切注意義務,特別是車輛在情況復雜的道路上行駛時,使用者更要盡到注意義務,若是由于使用者未盡到注意義務造成重大交通事故,則可以交通肇事罪追究無人駕駛汽車使用者的責任。
(2)以產品犯罪追究無人駕駛汽車生產者和銷售者的責任。在現階段無人駕駛汽車仍被當做產品來看待,那么無人駕駛汽車的生產者和銷售者就要為此承擔一定程度的產品質量保證責任,如果不是由于現有技術瓶頸,而是無人駕駛汽車存在質量問題導致重大交通事故的發生,則可以生產銷售偽劣產品罪等產品犯罪來追究生產者和銷售者的責任。[4]
(3)由社會保險來承擔責任。如果說該事故是由于當下技術瓶頸等非人為因素造成的,是社會發展所帶來的風險。[5]那么此時可以選擇由社會保險來承擔這份責任。
2.刑法關于弱人工智能對罪名設置影響的回應。針對可能有人利用人工智能犯罪而法無明文規定的情況,在罪名設置方面有增設新的罪名或者對傳統刑法罪名進行修正兩種方案。增設新的罪名如“濫用人工智能罪”等口袋罪名,在人工智能的外延尚未徹底界定清楚的情況下貿然增設口袋罪會顯得過于寬泛而無法準確定罪量刑。鑒于此筆者認為可以對傳統刑法罪名作出針對性修改使其可以囊括該種類型的犯罪行為,這樣就可以達到制裁此類犯罪維護社會秩序的目的。
(二)刑法對強人工智能階段所產生問題的回應
1.強人工智能階段刑法對人工智能主體責任判斷的回應。上文中我們提到由于人工智能的特殊性我們可能無法通過傳統方式分析出它的主觀意識。[6]對于此筆者認為,既然人工智能是由算法程序控制的,我們不妨通過探究算法邏輯并摸索出算法程序的特點,進而通過分析人工智能的算法程序來判斷它的主觀意識,最終得出其應當承擔的刑事責任。
2.強人工智能階段刑法對人工智能刑罰制度的回應。由于人工智能體的特殊性,現行刑罰制度無法對其直接適用,因此我們需要創造出針對人工智能程序的特有刑罰。比如我們可以考慮通過更高級別的命令語句修改或者重新編寫其程序,以此降低或者終止它的學習和運算能力,這樣就可以達到規制人工智能程序的目的。
結語
人工智能已全面參與到我們的生產生活之中,并對我們的現行社會規范產生了深刻的影響,刑法作為人類社會穩定的重要調節器受到了人工智能的多方面挑戰。因此刑法需要做出針對性的改變,盡量減少人工智能對人類社會造成的消極影響并讓其更好的服務于人類的當下與未來。
參考文獻
[1] 王軍:《人工智能的倫理問題:挑戰與應對》,載《倫理學研究》2018年第4期。
[2] 何麗:《基于人工智能視域下的法律主體研究》,載《政法學刊》2018年第3期。
[3] 譚釗:《淺談無人駕駛汽車的前景和面臨的挑戰》,載《東方法學》2017年第8期。
[4] 林偉杰:《產品質量法釋義》,中國民藝出版社2006年4月版。
[5] 林偉:《關于預防人工智能反叛的初步探討》,載《機器人技術與應用》2017年第4期。
對人工智能的思考范文6
關鍵詞:人工智能;教學改革;教學方法
引言
人工智能(ArtificialIntelligence)是一門研究和模擬人類智能的跨領域學科,是模擬、延伸和擴展人的智能的一門新技術。由于信息環境巨變與社會新需求的爆發,人工智能技術的日趨成熟。隨著AI3.0時代的到來,大數據、云計算等新技術的應用也愈發廣泛,對于管理類人才來說,加強對人工智能知識的深入學習,不斷將人工智能技術與管理知識結合起來,對其未來職業生涯的發展有著重要作用。人工智能是一門前沿學科,管理學院開設人工智能課程的目的是為了更好地培養學生的技術創新思維與能力,基于其覆蓋面廣、包容性強、應用需求空間巨大的學科特點,通過概率統計、數據結構、計算機編程語言、數據庫原理等基礎課程的學習,加強學生解決實際問題的能力,為就業打下基礎。本文基于社會對于人工智能領域的人才需求,結合諸多長期從事經管類專業課程教學的老師意見,針對管理類人才的人工智能課程教學內容與方法進行探討,以期對中國高校人工智能課程教學改革研究提供幫助與借鑒。
1、教學現狀與問題
作為一門綜合性、實踐性和應用性很強的理論技術學科,人工智能課程內容及內涵及其豐富,外延極其廣泛。學習這門課程,需要較好的數學基礎和較強的邏輯思維能力。針對管理類人才,該課程在課程教學過程中存在幾個較為突出的問題。(1)課堂教學氛圍枯燥目前,中國大多數大學仍采用傳統的課堂教學模式,在教學過程中照本宣科,忽略與學生的互動,并且缺乏能夠有效引起學生學習興趣與加深知識理解的教學環節設置,如此一來大大降低了學生自主思考的能力。在進行人工智能相關課程知識講解時,隨著章節的知識難度不斷增加,單向介紹式的枯燥教學方式無法反映人工智能學科的全貌,課堂講解難以同時給以學生感性和理性的認知,部分學生因乏味的課堂氛圍漸漸無法跟上教學進度,導致學習動力不足。(2)基礎課程掌握不牢管理類專業的學生大部分都會走向更加具體化的管理崗位,具有多學科的素養,但這也導致很多學生所學知識雜而不精。學生在基礎不夯實的情況下去學習更高層面的知識,給學生學習與老師教學都造成了很大困擾。人工智能課程知識點較多,涵蓋模式識別、機器學習、數據挖掘等眾多內容,概念抽象,不易學習。一些管理類專業的學生未能熟練掌握高等數學、運籌學、數據結構、數據庫技術等先修課程,缺乏一定的關聯思考和研究意識,導致課程學習難度增加,產生學時不足和教學內容難點過多的問題。(3)教學與實際應用脫節當下,人工智能廣泛應用于機器視覺、智能制造等各個領域,給學生提供了大量的現實案例,使得人工智能不再是高深莫測的理論,而是現實中可以觸及的內容。例如,在機械學科領域,人工智能技術是電氣工程、機械設計制造、車輛工程等方向的重要技術來源;在醫療領域,是醫療器械的創新生產源動力;在能動領域,是高端能源裝備與新能源發展的重要驅動;在光電信息與計算機工程領域,技術的發展時刻推動著智能科學與技術核心價值的提升。然而,對于管理類專業的學生來說,現階段的人工智能教材涵蓋許多智能算法及相關理論,在教學過程中常常涉及到很多從未接觸過的抽象理論和復雜算法,書本中的應用實例大多紙上談兵,缺乏專門適用于管理類專業知識與人工智能技術相結合的教學實踐,加上一些教師授課方法單一,不利于引導學生將人工智能算法應用于現實生活。另外,大學生對知識的理解能力差異很大,教師采用統一的方式教給他們,這使一些學生無法跟上和理解,教師也無法控制學生的學習狀況,導致學生缺乏動力。因此,如何結合學生的現實情況,提高他們的動手能力和實踐經驗也是人工智能課程教學要考慮的問題。
2、管理類人才的人工智能課程教學改進策略
課程教學改革是一項提高大學教學效果和人才培養質量的重要手段。如何在時代背景下應用新技術和新思想進行實施課程教學改革是高校亟待解決的問題。對于高校的教學工作而言,教學目標、教學內容和教學方式的變化不再是課程資源的簡單數字化和信息化,而是充分利用時代信息資源優勢的新型教學模式。針對管理類專業人工智能課程教學過程中存在的問題,可以從教學方法改進和教學內容設置兩個方面進行課程教學改進。
2.1教學方法改進
教師對學生具有引領作用,其教學方法的改進能夠帶動學生改進自身學習方法。(1)啟發式案例教學案例教學法就是教師根據教學目標、教學內容以及教學要求,通過安排一些具體的教學案例,引導學生積極參與案例思考、分析、討論和表達等多項活動,是一種培養學生認知問題、分析和解決問題等綜合能力的行之有效的教學方法。啟發式案例教學以自主、合作、探究為主要特征,調動學生的學習積極性,并緊密結合人工智能領域的相關理論與方法,有效理解知識要點及其關聯性,適用于管理類專業學生的教學。具體而言,高?;谄鋯栴}啟發性、教學互動性以及實踐有用性等特點,可以建立基于人工智能知識體系的教學案例庫,雖然這項建設將極具挑戰性與耗時性,但具有很強的積極效果:培養學生較強的批判性思維能力,更多地保留課程材料,更積極地參與課堂活動,對提高教學質量、培養具有人工智能背景的管理類人才具有重要意義。例如,通過單一案例教學,讓學生掌握相關基礎知識原理及應用;通過一題多解的案例使學生思考如何獲取最有效的解題方法;通過綜合案例的設計,啟發學生全方位地探索問題的解決方案。(2)研討互動式教學研討互動式的各個教學環節是逐漸遞進、有機結合的。研討是基于學生個體的差異性,在課堂討論的過程中對學生做出評判,從而對不同類型的學生開展針對性的教學?;觿t是在研討的基礎上,通過老師與學生、學生與學生的互動,讓學生主動參與到課堂教學的過程中來。在人工智能課程教學過程中,教師通過課堂討論了解學生對于知識點的掌握情況,可以有針對性地設計教學內容,例如,對于學校積極性不強的學生,將人工智能理論內容與學生個人興趣范疇、社會產業發展及研究現狀聯系起來,能夠極大程度地提高學生學習的自主能力;對于基礎知識較為薄弱的學生,可以在教師的指導下查閱相關文獻資料,根據自己的理解撰寫心得報告,并在課堂或課外進行師生互動。像這樣研討與互動相結合的模式。有助于增強學生的探索和求知欲望,建立起濃厚的學習氛圍。(3)有效激勵式教學人工智能是引領未來的戰略性技術,人才需求量極大,對教師的教學水平也提出了更高要求,因此,進行有效激勵極為重要。在學生激勵方面,可以舉辦各類人工智能競賽項目,設置相應項目獎學金,吸引學生參與實踐,調動學生做研究、發論文的積極性。例如,教育部主辦的中國研究生人工智能創新大賽,圍繞新一代人工智能創新主題,激發學生的創新意識,提高學生的創新實踐能力,為人工智能領域健康發展提供人才支撐。高校也可以借鑒這種模式,在各學院乃至全校開展此類競賽項目,激發學生的創新能力與團隊合作能力,鼓舞更多學生加入到人工智能課程的學習中來,激發其學習興趣。在教師激勵方面,在教師聘任和提升過程中把參加學生課程制定、課堂與課外作業、課程項目和論文指導等看作教學任務的一部分,鼓勵教師積極參與這些活動。(4)學科滲透式教學人工智能學科知識融合程度較高,學科交叉性強?;谌斯ぶ悄艿膶W科交叉性特點,增強管理類人才對學科應用的領悟,可以采取開展學科滲透式教學的方法。從2015年起,國務院和教育部先后印發了《國務院關于積極推進“互聯網+”行動的指導意見教育》、《高等學校人工智能創新行動計劃》等文件,“互聯網+”、“智能+”已經滲透到各個領域,人類進入數字經濟時代,社會需求“技術+管理”的高端復合人才。例如,基于工業4.0和強國戰略,人工智能技術在智能制造的應用極為廣泛。上海理工大學非常重視少數民族預科班的教育質量。為增強少數民族管理類人才對該領域應用的認識,我們請機械工程、能源動力領域的相關專家以授課或講座的形式,進行相關領域知識和發展趨勢的講解,使學生理解更為透徹。此外,在教學實踐過程中,還可以用舉辦人工智能知識交流會、線上人工智能論壇等形式,促進不同專業間老師、學生對于人工智能知識模塊的見解,相互交流、滲透和學習,從而推動人工智能課程教學的改進。
2.2教學內容設置
世界一流大學在人工智能課程內容設置根據不同國家的教育體系設置,肯定會有不同,但頗有共通之處。本文借鑒世界頂尖大學經驗,針對管理類專業人工智能課程教學內容進行研究,結合中國教育體系設置,認為應從以下幾方面進行改進。(1)核心內容設置為避免學生因為知識點過多而出現雜而不精的問題,勢必要精化教學內容。在互聯網時代,我們可以使用云計算和其他方式來實現數據信息的傳輸、存儲和處理,通過在線收集和整合網絡課程相關數據,挖掘和豐富教學資源,并在整合課程資源的基礎上,進行研究方法和前沿知識的擴展。在核心內容設置方面,可以通過收集到的數據資料,選擇人工智能領域具有代表性且難易程度適中的知識作為重點,使學生能夠在有限的學時內掌握人工智能的知識脈絡。例如,編寫針對管理類人才的人工智能教材,內容涉及緒論、知識表示與推理、常用算法、機器學習、神經網絡等方面的同時,重點增加相應知識點在管理上的應用案例,加強學生對知識點的理解。同時,根據管理類專業偏向領域,開設關聯程度較大、應用較廣泛的人工智能選修課程,以便學生根據自己的興趣與需求選修具體方向的課程。(2)注重學生的數理及編程基礎良好的數理及編程基礎是學習人工智能的前提。只有具備了這些基礎,才能搞清楚人工智能模型的數量關系、空間形式和優化過程等,才能將數學語言轉化為程序語言,并應用于實驗。管理學院人才的數理及編程基礎相對薄弱,因此,在安排學生學習人工智能課程之前,建議開設面向全體管理類專業學生的微積分、線性代數、概率論等專業基礎數學課程以及C語言、python等編程基礎課程,使學生具備數學分析的基礎與一定編程基礎,為學習人工智能課程打下堅實的基礎。另外,可以推進MOOC平臺建設,在平臺上開設人工智能網絡課程,幫助學生掌握人工智能知識基礎及專業技能。(3)實驗建設為了加強學生對于人工智能知識點間的關聯性理解,可以基于不同的應用模塊,設計具有前后鋪墊、上下關聯的綜合性實驗,設計不同層次的項目要求,同時基于相同的實驗課題,讓學生分組對實驗課題進行攻克,并設置多元化的實驗評價體系,通過實驗教學過程中反映出的不同進度,讓教師能對學生的學習水平做出準確評判,及時進行教學反思,以便更好地開展下一步工作。例如,針對人工智能課程應用中很廣的遺傳算法,在某一管理規劃的具體應用上設置理解-實現-參數分析-具體應用-嘗試改進-深度拓展的不同層次的項目要求,在這些項目層次中規定必做項與可選項,讓學生基于同一實驗課題進行合作學習,然后通過個人自我評價、小組成員互相評價以及教師評價的方式進行打分,對小組整體能力以及個人能力進行綜合評估,以期培養學生的自主思考能力。