高數與高中數學的區別范例6篇

前言:中文期刊網精心挑選了高數與高中數學的區別范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。

高數與高中數學的區別

高數與高中數學的區別范文1

[關鍵詞]高等數學;銜接比較;極限;一元函數微積分

[中圖分類號] G64 [文獻標識碼] A [文章編號] 2095-3437(2016)11-0140-04

一、引言

高等數學作為一門大學生的基礎課,在大學一年級入學時就開設了。根據生源的情況,學生可能是選修高等數學(理工科學生)、經濟高等數學(經濟管理類學生)、文科數學(文科生)、大學數學(介于理工科與文科之間的,如農學、林學等專業)。通常是學習一個學年,上學期學習高等數學I,內容主要集中在一元函數極限與微積分及其應用;下學期學習高等數學II,內容主要集中在多元函數極限與微積分及其應用、無窮級數、微分方程等。由于最近幾年大多數高校調整教學模式、減少理論課學時、增加實驗課學時數,高等數學I、II的理論課時均縮減至64學時。同時,高中生也在所開設的數學課中,學習了部分高等數學的知識,與大學所學內容有重復的情況。高中數學也細分為必修與選修內容,這樣做的出發點是好的,但高中數學是以高考為指揮棒,高考不要求的內容,中學教師基本上是不會花過多時間講解的。高考大綱才是決定高中數學內容的關鍵。因此,在非常有限時間里,如何高效地講授高等數學?如何補充高中未學過的內容?如何減弱或規避高中已經學過的內容?如何編寫高等數學教材與大綱?現行的高中數學大綱與高等數學大綱是否合理?如何做好高中數學與高等數學的教學銜接?現在的中學教師與大學教師是否應該與時俱進,更多地提升自己以適應新形勢與新情況?現在教育部門的管理者是否應該更多的聽取一線教師的意見,正視教學實踐中碰到的問題,從而主導大學高等數學的教學改革?本文通過比較研究,系統性地指出二者間的異同及存在的問題,并提出自己的建議,供中學教師、大學教師、教育管理部門參考。

二、內容的比較

最近十多年,大學數學中的部分內容已經下放到高中進行講解;高中的內容在20世紀90年代的教材基礎上,增加了微積分初步內容、算法初步、概率、平面向量、簡單邏輯、統計等,同時也刪除了一些內容。部分內容在高等數學中有重復,因此,在大學數學教學過程中面臨著一些實際問題。重復的內容如何精簡講解?高中弱化或不作要求的內容,如何再強化講解?這些都是一線教師、教材編寫者、教育主管部門需要了解并想辦法處理的事情。現對高中數學中的函數與極限、一元微積分內容與大學高等數學中相應的內容做比較。這塊內容是重復較多的部分,也是最有代表性的內容。通過比較可以發現哪些內容在中學已經學過了?哪些內容在中學還沒有接觸?哪些內容在高中與大學都省略掉了,但在后續的學習中又要繼續用到它,這部分內容是應該重點講授的。如果是學過的內容,這部分內容的計算技巧學生應該是比較熟練。如果沒有學過,那就得加強講解與學習。下表是一元函數極限、微積分內容與高中數學所對應內容的異同,以這塊內容為例,可以看出目前大學的高等數學(上冊)內容與中學很多內容是重復的。

這是大學數學內容下放的結果。感覺還是混亂,大學數學與中學數學的內容界限不清楚。中學數學是在模仿大學的課程模式,如必修、選修,其中又細分為必修1、2等。選修也分好幾個模塊,這樣的初衷是想因人而異,讓學生去選,出發點是好的。但所有的這一切,其實最終還是落到了高考指揮棒上。無論怎么細分,最終中學的師生都是圍繞高考大綱進行學習,其他的只不過是擺設,即使學有余力的學生,也不會花精力去學習這些高考不考的內容。這樣的選修內容就沒有意義,它不像大學的選修課,至少可以修學分。

三、存在的問題

高等數學通常分上、下兩冊,一個學年的學習時間。由于課時縮減,很多學校是64學時一個學期,即一周4節高等數學課。對于高數上冊的內容,這個時間是完全夠用的。高數上冊集中講解一元函數的微積分,這些內容學生在高中都有了初步認識,因此,入手并不難,學生期末考試的通過率也較高。但高數上冊的教學、內容安排存在一些問題。

(一)大學學生的直觀認識

剛進入大學,學生忙于各種事情,包括適應新的環境。高等數學上冊的前幾次課是講映射與函數,數列極限等內容。這些內容學生在中學已經學過,如果教師還是照本宣科,學生的積極性與求知欲會受到嚴重打擊,從而失去興趣。學生會直觀認為教師是在重復高中的內容,以為高等數學很容易學。但事實是高等數學下冊內容是較難的,但學生礙于師生關系,不會及時向教師反映這些情況。出現這些情況,教師與教育管理部門應該負很大責任。除了教材之外,我們還應該了解一下高中數學、往年的高考數學題等,從而對學生的高中數學有一個基本了解。

(二)教師的教學問題

現在的大學數學教師基本是碩士研究生或以上的學歷,他們對高數內容的理解、講解是沒有問題的。但這些教師的高中數學知識都是在20世紀90年代獲得的,現在高中數學的教學大綱已經發生了很大的變化。教師們還是停留在自己以前的記憶里,沒有與時俱進,拿著老舊的教材,重復講解高中的數學知識,學生在課堂上一臉茫然,不是聽不懂,而是覺得■嗦。而對比較難的、有實用性的內容教師反而又省略了,如相關變化率、反常積分等。這樣下去,學生會覺得教師是在做無用功、在重復高中數學。學過的、容易的反復講,難點內容又省略了。其實不用過分擔心學生,數學是嚴謹的,就是要講解抽象定義、定理與方法,而不是回避、省略它們。

(三)高等數學教材要做大的修訂

修訂高等數學教學大綱與高等數學教材迫在眉睫。不僅是高等數學,還有概率論、概率論與數理統計、文科數學等,這些課程也一樣。為什么要修訂?重復的內容太多,斷層的內容不少,兩不管的內容也存在。有了合適的教材與教學大綱,才能與中學的內容銜接好,做到既不重復又不遺漏地把高中數學與高等數學有機地銜接起,成為一個完整的體系。現在流行自編高等數學教材,這是很好的現象,理工學校有自己的教材、農林院校有自己合適的高數教材。這些工作通常是由一個學校或幾個學校的數學教師合作完成的。正是因為如此,教材也參差不齊,這是關系到學生后續課程的基礎內容。在編寫教材的過程中,教師們應該充分調研高中數學內容,知道學校的生源主要在哪里?文科生還是理科生?不同的高數教材應該區別對待。教材的編寫應盡量做到知識點內容不重復、不遺漏、突出重點與應用。

(四)高等數學的教學教法需要項目立項

只有立項這方面的教改科研項目,才能更好地展開全面研究,才能投入更多人、財、物去實踐。因為這是一個系統工程,不是簡單寫本教材即可。在項目支撐下,可以對高中數學的教學情況、教學范圍、教學用教材、教學輔導材料、教師的教學理念等進行調查,對大學教師的教學觀念、高等數學教材、高等數學的教學計劃與大綱等進行分析。通過比較研究,形成學術成果,發表于刊物,讓教育工作者與決策層參考,從而對高等數學進行全方位的改革。

(五)現行高等數學授課、考試等相關問題

現在高等數學與高中數學的重復內容較多,這就決定了我們在授課過程中,首先要了解學生們在高中都學了些什么內容?是必修還是選修,是高考有要求的嗎?如果是必修、高考要求的內容,那么學生高中三年對常見的計算技巧應該是比較熟悉的。如:定積分的計算、數列的極限等。其次,要了解生源,由于大學很多是大班授課,學生來自全國不同的省份,可能高中學過的數學內容有些不一樣。有的可能是文科生與非文科生混在一起,這時學生的數學基礎是不一樣的,要照顧好所有學生的學習。再次,要充分了解高等數學教材與教學大綱,只有這樣才能對高等數學與高中數學的區別、異同做到心中有數,突出重點難點,少重復,才能在非常有限的時間里,不遺漏地傳授數學知識。第四,在考試方面,大學高等數學不是競爭性考試,應該更多地考查學生掌握知識的全面性,考查的覆蓋面要廣、知識點要多,但難度與技巧性要降低。更多的是讓學生理解高等數學中的定義、定理、方法的內涵,了解數學思想,而不是死記很多公式、定理,要讓學生學會自學、發現問題、查找資料解決問題。最后,應該增加平時的考核,方法與形式可以多樣化。這樣做是為了突出應用性,而不是為了應用而講應用,應該結合學生的專業方向,讓學生以課程論文的形式去挖掘其中的數學思想與方法理論,這是區別于高中數學的地方。

(六)高中的數學內容安排是否合理

對于大學高等數學與高中數學的銜接比較問題,現在我們更多的是從高等數學的內容適應高中內容的角度來研究,是否可以換個角度看這個問題?比如高中的數學內容與大綱的改革是否恰當?是否應該修正?目前,高中數學有必修課和選修課,內容多而雜,幾乎涉及了目前大學中非數學專業的所有數學課,如:高等數學、概率論、概率論與數理統計、線性代數等。其中,高等數學、概率論與大學數學的內容重復較多。高中是以高考為目的、為指揮棒的,這是師生努力學習的目標。如果其所選的內容沒有納入高考范圍,那么這些選修內容就形同虛設。另外,因為文科生與理科生的考試范圍不一樣,學習的內容也不同。中學的教材是不是應該更細化?對偏文科的高中生有專門的教材,從而把理科生的教材也區別出來。這樣處理高中所學的數學內容就非常明確。對高考不要求的內容應該堅決去除,以免高中有內容但不講解,而大學又覺得中學接觸過了,從而輕視講解,這樣導致出現兩不管現象從而誤導了學生。最后,大學的數學內容是否下放到高中太多了呢?目前有這種現象,小學就接觸初中的內容,初中里有高中的知識,高中又占了很多大學的內容,都是往前趕,界限不明確,學生以為自己都學了,都接觸了,但事實是都不太懂。

(七)大學生學習高等數學的問題

在目前的高等數學教材、教學大綱下,大學生如何學習高等數學?這得從高中數學的教與學談起。高中數學主要以高考為目標,對各種學習都是舉一反三、反復練習。教師可以用較短的時間講完新課,每個小的知識點教師可以講得很詳細,板書也很到位,一步接一步,很清晰。然后是課后的大量作業、測試題、模擬題。而且教師會每天陪在學生身邊,包括晚自習時間。但進入大學之后,情況發生了巨大的變化。大學生的時間相對自由,教師上完課后就走了,其余時間大學生可以自由支配。在大學里,學生主要是靠自學,他們在圖書館查資料,與同學討論,向教師請教,通過自主完成教師布置的作業,自己動手解題。教師的講課過程相對較快,教師要在短時間內完成較多的教學內容,板書也不像高中那樣整齊劃一,形式比較自由。因此,有部分學生不適應大學高等數學的學習。在大學里,平時考試測驗較少或幾乎沒有,只有期末考試一次,這也與高中大不一樣,這也讓學生有點不太適應。這些問題值得注意,應適當調整,讓學生適應新的學習環境。

(八)上級主管部門是否應主導改革,其余時間大學生可以自由支配

這得從兩個方面看。一是高中數學安排是否合理?很多以前大學數學內容下放到高中,而高中目前還都是以高考為目標,納入很多選修的內容是否恰當?是否有點事與愿違?將大學數學內容下放到高中,出發點是拓寬學生的知識面,但實際上高中師生只圍繞高考大綱而進行教學。因此,應該少而明確地下移部分大學數學內容到高中,不能太泛,不然與大學的數學沒有明顯的界限。也許高中的數學教師并不太了解大學的數學,這就導致了是不是把更多的大學數學內容下放到高中,讓學生們提前接觸大學的數學知識就是一種素質教育,是一種看起來很讓人覺得“高大上”的學習?這些都值得思考。此外,高中數學的教學大綱、高考的大綱與范圍是否應該調整?二是大學的高等數學必須改革,如果再不改革,就跟不上時代的變化。高等數學的教材、教學大綱、教學計劃與要求、考試的模式等,都要在上級主管部門的組織下進行改革。同時,任課教師需要了解當前高中數學學習的內容,需要進一步加深對當前高中數學學習內容的了解。做到知己知彼,方能融會貫通,這樣兩個階段所學的數學內容才能做到自然銜接。教育管理部門應自上而下出臺相應的政策,讓高中教師與大學教師均參與其中,把這兩塊數學的改革工作順利完成,使得這兩塊的內容銜接更自然。

四、對問題的思考與對策

針對以上問題,筆者提出如下一些思考對策。第一,修改高中數學與大學高等數學的教學大綱,做到二者之間的內容盡量少重復、少遺漏,知識點界限明確,少模糊地帶。高中不要有不屬高考范疇的選修課,至少目前不適合。應該把文科生的教材與理科生的教材區分開來,采用不同的教材。在當前高中教育階段,不適合開設選修課,因為師生都沒有多余的時間和精力去教學高考不要求的內容。第二,修編高中與大學的數學教材,組織既了解大學又了解當前高中數學的教師參與編寫教材,合理安排內容,做到有機銜接。有了明確的教學大綱與好的教材,那么經過高中數學的學習,大學的高等數學就好處理了。同時,高中學過的內容在高等數學教材中就不用再寫入了。第三,大學生在學習高等數學時,要有心理準備。進入大學并不是什么都“解放”了,雖然平時不用考試,與高中相比輕松了很多,但要學會自己管理時間。學生要和高中時一樣努力,獨立完成作業、獨立思考,從圖書館查找資料,與同學、教師多交流,主動思考,勤學多問,而不是像中學那樣等教師來講解。第四,在教學過程中,教師也需正視自己的問題,積極提升自我,積極申報教學研究項目。教師在教學過程中應盡量做到小班教學。如果條件不夠,那文科生和理科生一定要分開授課,這樣才有針對性。如果這個也做不到,那只能遷就文科生的數學水平教學,而不是拿著教材就講,不去了解學生們高中數學都學了些什么。如何快速了解高中數學?一是買本高中數學教材,二是查找近幾年的高考數學試卷。這樣就基本可以掌握學生的基礎情況。第五,教育主管部門應充分調研,收集一線教師的教學問題與經驗,為改革作參考。教育主管部門要更多地傾聽一線師生的意見,并參考海內外的教學教材的優秀經驗,取其精華,為我所用。

以上這些思考與對策雖不太全面,但從教學內容與教材、學生的學習、教師的教學、主管部門的主導改革等幾個方面做了分析,為高等數學與高中數學中存在的銜接問題提出了一定的解決思路。

五、總結

作為一線的高校數學教師,在最近幾年的教學過程中,筆者深刻感覺到當前大學的數學教學與高中的數學有很多重復的內容,如高等數學中的微積分、概率論、概率統計等。鑒于此,筆者從高等數學中的一元函數的微積分與高中數學的比較出發,提出了當前高等數學與高中數學中存在的一些問題,這些類似情況也存在于概率論與概率統計中。筆者在這里提出自己的一些思考與對策,也許還不太完整且不太成熟,但這些都是一些獨立的思考,僅供大家參考。

[ 參 考 文 獻 ]

[1] 同濟大學應用數學系.高等數學(第五版)上冊[M].北京:高等教育出版社,2002.

[2] 張宇.高中數學公式定律及要點透析[M].沈陽:遼寧教育出版社,2015.

[3] 王思義,朱鍵.關于高等數學與高中數學銜接問題[J].高教學刊,2015(11).

高數與高中數學的區別范文2

初中生經過中考的洗禮進入高中,都有強烈的求知欲,想把高中課程學好,像初中一樣精彩。但經過一段時間的學習,學生普遍感覺高中數學不容易學,感覺枯燥、乏味、抽象等。很多學生的數學成績出現嚴重的滑坡,其中原因很多,主要原因是初高中數學教學上的銜接問題。筆者有幸在2006年至2007年到初中鍛煉,和初中數學教師共事,與他們進行了許多的探討,尤其是對初高中數學教學的銜接。

二、初高中在數學學科上各自的特點

(一)新課標下初中數學的特點。

1.少概念多直觀。初中數學很少用嚴格的定義,多是“像……叫做……”,“類似……叫做……”。比如像單項式與多項式、空間圖形中的柱體錐體等都是如此。這樣形象直觀,學生容易理解和辨別。

2.空間圖形的認識加強。在立體幾何部分強調了要會作三視圖,同時也要求能正確作出空間圖形的平面展開圖,這對以后高中的立體幾何知識的學習非常有益。

3.在平面幾何部分有平移旋轉的知識點。這給出了幾何的動態過程,有利于學生對圖形變化的認識,有利于學生空間想象能力的培養。

4.強調概率統計方面的知識。要求學生會計算簡單概率問題;加強了統計圖表,要求學生學會分析圖表。

(二)高中數學的特點

概念規范抽象;內容多,坡度陡,節奏快;定理嚴謹,邏輯性強;抽象思維要求高,知識難度加大。這些都增加了教與學的難度。

三、存在脫節的主要方面

(一)知識內容脫節。

初中數學教材通俗易懂,側重于形象直觀、定量計算和證明等;而高中數學教材較多研究的是邏輯推理、空間想象與數形結合等,是比較動態的過程。

(二)學習方法脫節。

初中學生習慣于跟著教師走,缺少積極思考數學問題的習慣,缺乏歸納總結能力。高中則要求學生勤于思考,勇于鉆研,善于觸類旁通、舉一反三、歸納、探索規律。然而高中新生往往還是習慣于初中學習方法,在學習時缺乏一定的抽象思維能力、空間想象能力及邏輯推理能力。

(三)教學方面脫節。

初中教師的教學主要依據初中學生的特點和教材的內容,教學進度較慢,對重點內容及疑難問題都用較多時間反復強調、反復練習;而高中教師卻沒有充裕的時間反復強調反復練習,習慣于初中教師教法的學生進入高中后,一時難以適應這一教法。

四、銜接問題的對策

課改前初中數學課堂教學模式主要是“復習―引入―講授―鞏固―作業”,但現在的初中課改后則轉變為“情境―問題―探究―反思―提高”,在課堂中更加注重在情境中創設問題,把數學知識融入在其中,更加關注學生在知識探究中的體驗。教師的職能也發生變化,由簡單的知識傳授者變成了組織者、引導者、合作者和共同學習者。在此情況下,高中的數學教師也要作出相應的變化。

為了使學生快速平穩地度過初高中數學的銜接過程,教師應注意以下幾點:

(一)認真研究教材,填補初高中脫節的數學知識點和思想方法。

1.做好初高中數學教材中脫節知識點的銜接,補充數學思想和方法。初高中數學教材中有許多知識點需要做好銜接工作,如函數的概念、映射與對應、特殊方程的解法、根式的運算等。教師不但要注意對舊知識的復習,而且應該講清新舊知識的聯系和區別,適當滲透化歸和類比推理等數學思想和方法,幫助學生溫故而知新,實現初高數學知識點的銜接。

2.從實際出發,補充適量所缺知識點方面的習題。在初高中數學教學的銜接中,教師可根據學生的實際情況,適當編一些所缺知識點方面的習題,使學生由淺入深、循序漸進地掌握所缺知識點。

(二)改變教學方法,培養學生能力。

1.開始放慢教學速度,然后逐步加快,循序漸進。由于初中生習慣較慢的教學進度,因此,高一起始教學進度應適當放慢,以后酌情加快,使學生逐步適應高中數學教學的節奏。

2.創設問題情景,揭示知識的形成發展過程。在初高中數學教學銜接時,教師可以采用“情境―問題―探究―反思―提高”過程,讓學生學會把研究的對象從背景中分離出來,揭示知識(概念公式定理法則等)的本質,最終形成數學問題,然后對問題進行解決,回頭再反思總結,從而達到提高學生分析問題和解決問題的能力。

3.培養學生的探索精神和推理能力。在初高中數學教學的銜接中,教師應幫助學生做好題后反思。一道習題解完后,教師要引導學生想想是否有別的解法,有無規律可循或改變條件或結論,讓學生探索這一命題,并就新命題的正確與否加以論證。長此以往,學生可培養探索精神推理能力,逐步達到觸類旁通,同時也鍛煉思維的嚴謹性。

(三)研究并指導學生學習方法,提高學生學習效率。

1.注意培養良好的學習習慣,提高學習效率。教師要指導學生抓好預習、聽課、消化、整理、反饋、鞏固等幾個環節,對問題要獨立思考。在學生遭遇挫折時教師要引導他們進行正確分析,幫助他們找出癥結所在,注重加強個別指導,激發學習興趣。

2.重視基礎知識培養基本能力。教師應緊緊依靠新課改的要求,在平時的課堂和課后練習中讓學生充分掌握數學基礎知識,打下堅實的基礎,逐步培養學生的理解、分析、應用等基本能力,鍛煉學生的邏輯思維演繹推理定量定性的計算等能力。

3.培養自學習慣和能力。教師要授人以“漁”,因材施“導”,努力教會學生自學,培養自學能力,這是教之根本。教師要幫助學生克服對教師的依賴心理。高中數學知識不僅僅在課堂上,還需要課后認真消化。這要求學生具有較強的自學理解能力。因此,在初高中數學教學的銜接中,教師要有意識地培養學生的自學能力和獨立鉆研問題的學習習慣。

(四)適應學生的心理特征,做好學生的心理工作。

學生往往因為認可一位教師而認可這門學科。教師通過與學生的心理交流,可讓學生信任教師,教師也可了解學生的所想所思,做到對癥下藥,慢慢培養他們的興趣毅力信心,使他們在學習過程中能自覺地調節自己的心理,積極進行數學活動。

初高數學教學的銜接問題是新課改下的老問題,在高中數學的起步教學階段,教師要分析和做好初高中數學教學銜接工作,使學生盡快適應新的學習環境和模式,從而更有效、更順利地進行高中數學的學習。

參考文獻:

高數與高中數學的區別范文3

關鍵詞:類比思想 高中數學 建議

隨著現代教育教學方式方法的不斷改進,一種新的教學思想逐漸被很多教師所采納,那就是在教學的過程中引入類比思想。將類比思想應用在不同學科的教學當中,往往能夠收到意向不到的效果。同樣,將類比思想導入到高中數學的教學中,也能極大提高高中數學的教學效果。

一、類比思想的內涵以及與高中數學的結合點

類比思想是一種基本邏輯思維,它是將屬性上接近或相似的事物進行比較分析并從中總結出類似事物方法和規律的一種思維方式,類比思想在科學研究中得到了廣泛的應用并且取得了豐碩的成果。同時,類比思想也是一種高中數學學習方法的重要指導思想,學生采用類比思想能夠將復雜問題簡單化、陌生問題熟悉花以及抽象問題形象化。具體說來,就是針對高中數學的章節、知識點和題型進行對比,將問題落實在具體章節知識點和具體的解題案例中,從而找出其共性并融匯貫通,以通常普遍的解題規律去應對新題型新問題。

二、類比思想在高中數學教學中的作用分析

根據對類比思想基本內涵及其與高中數學學習方法之間關系的分析,在對大量利用類比思想進行高中數學學習的成功個案分析的基礎上,本文認為類比思想在高中數學教學中的作用及其實證案例如下面三個方面所展示的。

第一,類比思想可以幫助學生對于數學知識的學習和掌握由淺入深、有具體到抽象地學習和掌握新知識。比如在高中立體幾何的學習階段中,對于點線面知識點的學習,可以讓學生對于生活中的具體事物進行抽象以形成點線面的概念,例如對于平行公理和空間中直線之間的關系類型以及從二維空間到三維空間的轉移中會發生什么樣的變化;在學習函數的性質時,讓學生學會根據函數的圖形來分析函數的各種屬性如周期截距及增長趨勢等,并且用函數的觀點來理解方程、不等式以及數列;在復數與實數的四則運算中了解復數運算與實數運算有什么不同和相同點,以及是復數的什么屬性導致了這些算法上的區別。

第二,類比思想可以幫助學生將不同的表面上零散的知識點和模塊貫穿起來形成一個有機統一整體,從而開闊解題思路和辦法。在高中數學的學習中,經常會遇到函數是周期函數的證明問題,這部分題目一般以復合函數的表達形式出現,但具體分析可以看出其是有基本的周期函數經過四則運算的形式出現的,因此這類題目的任務就是要尋找其中隱含的基本周期函數,并找出這些基本周期函數經過四則運算后其基本屬性的變化情況,進而做出是否周期函數以及周期是什么的求解和證明;另外,在求點的軌跡變化時也是運用類比思維的一種典型情景,點的運行軌跡題目是幾個函數或方程的一個綜合問題,利用基本的函數形式和方程進行類比可以快速準確地解決這類題目。

第三,類比思想可以幫助學生在高考中節約考試時間并提高解題效率和水平。以2006年全國高考題的一個對于直角三角形勾股定理的考察,其要求將此二維空間中的定理擴展到三維空間來研究三棱錐側面面積與底面面積之間的關系,如果學生能夠采用類比思想進行積極的思考,不難做出三維空間中三棱錐的底面面積的平方等于三棱錐三個側面面積的平方和;另外對于集合元素之間的關系推理也是能夠采取類比思想進行快速準確解題的典型題目之一,元素與幾何之間的屬于或不屬于關系、集合與集合之間包含、包含于、相等之間的關系是現實中整體與部分關系的一個表現。

三、高中數學教學中培養學生類比思維的建議和對策

根據類比思想及其對于高中數學教學的作用和意義的闡述,在高中數學教學中如何運用類比思想進行思維和創造性解題案例分析和應用的基礎上,本文認為應該從下面幾個方面加強對于學生類比思維的培養和運用。

首先,將高中數學中關鍵知識點進行屬性分解,從而形成類比思維的基本元素,將這些基本元素進行對比分析。這是進行類比思維的前提,只有找到類比思維所賴以進行的類比基本元素,接下來的步驟和方法才有基本載體。相關研究顯示,該步驟對于類比思維培養的貢獻率在54%以上;其次,針對關鍵知識點進行典型案例的選取并進行深度挖掘和分析,將典型例題中包括的思路涉及的知識點進行解剖,以知識點帶動關鍵題目案例的選取,應用典型案例挖掘和分析關鍵知識點,是類比思維正確實施和推行的關鍵步驟。相關研究顯示,其對于高中生類比思維培養的貢獻率在22%左右;再次,經常用類比的思維和方法進行知識之間的連串和梳理,這是類比思維培養的一個日常行為,即它是類比思維在高中數學學習中的一個常態。相關研究顯示,其對于高中生類比思維的培養貢獻率在14%左右。

四、總結

本文分析和探討了類比思想在高中數學教學中的應用問題,類比思想是一種有效的學習方法和手段,特別是在高中數學階段的學習中。在本文最后,圍繞著高中數學學習中類比思維的培養和形成提出了建議和對策,主要從案例選取、類比點要素分解及知識點梳理三個方面進行考慮和著手,以期能對提升高中數學教學水平提供有益的參考意見。

參考文獻:

[1]黃彬彬. 高中數學解題規律例說[J]. 數學學習與研究, 2010, (07) .

[2]趙憲庚. 高中數學新型教學方法初探[J]. 魅力中國, 2010, (09) .

[3]楊成鐵. 高中數學學習方法指導[J]. 新課程學習(綜合), 2010, (01) .

高數與高中數學的區別范文4

【關鍵詞】 高中數學 數學思維 障礙 實效性〖HJ1.0mm〗

思維是人腦對客觀現實的概括和間接的反映,反映的是事物的本質及內部的規律性。所謂高中學生數學思維,是指學生在對高中數學感性認識的基礎上,運用比較、分析、綜合、歸納、演繹等思維的基本方法,理解并掌握高中數學內容而且能對具體的數學問題進行推論與判斷,從而獲得對高中數學知識本質和規律的認識能力。高中數學的數學思維雖然并非總等于解題,但我們可以這樣講,高中學生的數學思維的形成是建立在對高中數學基本概念、定理、公式理解的基礎上的;發展高中學生數學思維最有效的方法是通過解決問題來實現的。

然而,在學習高中數學過程中,我們經常聽到學生反映上課聽老師講課,聽得很“明白”,但到自己解題時,總感到困難重重,無從入手;有時,在課堂上待我們把某一問題分析完時,常??吹綄W生拍腦袋:“唉,我怎么會想不到這樣做呢?”事實上,有不少問題的解答,同學發生困難,并不是因為這些問題的解答太難以致學生無法解決,而是其思維形式或結果與具體問題的解決存在著差異,也就是說,這時候,學生的數學思維存在著障礙。這種思維障礙,有的是來自于我們教學中的疏漏,而更多的則來自于學生自身,來自于學生中存在的非科學的知識結構和思維模式。因此,研究高中學生的數學思維障礙對于增強高中學生數學教學的針對性和實效性有十分重要的意義。

 1.高中學生數學思維障礙的形成原因

 新舊知識在學生的頭腦中發生積極的相互作用和聯系,導致原有知識結構的不斷分化和重新組合,使學生獲得新知識。但是這個過程并非總是一次性成功的。一方面,如果在教學過程中,教師不顧學生的實際情況(即基礎)或不能覺察到學生的思維困難之處,而是任由教師按自己的思路或知識邏輯進行灌輸式教學,則到學生自己去解決問題時往往會感到無所適從;另一方面,當新的知識與學生原有的知識結構不相符時或者新舊知識中間缺乏必要的“媒介點”時,這些新知識就會被排斥或經“校正”后吸收。因此,如果教師的教學脫離學生的實際;如果學生在學習高中數學過程中,其新舊數學知識不能順利“交接”,那么這時就勢必會造成學生對所學知識認知上的不足、理解上的偏頗,從而在解決具體問題時就會產生思維障礙,影響學生解題能力的提高。

 2.高中數學思維障礙的具體表現

 由于高中數學思維障礙產生的原因不盡相同,作為主體的學生的思維習慣、方法也都有所區別,所以,高中數學思維障礙的表現各異,具體的可以概括為:一是數學思維的膚淺性。由于學生在學習數學的過程中,對一些數學概念或數學原理的發生、發展過程沒有深刻的去理解,一般的學生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無法擺脫局部事實的片面性而把握事物的本質。二是數學思維的差異性。由于每個學生的數學基礎不盡相同,其思維方式也各有特點,因此不同的學生對于同一數學問題的認識、感受也不會完全相同,從而導致學生對數學知識理解的偏頗。這樣,學生在解決數學問題時,一方面不大注意挖掘所研究問題中的隱含條件,抓不住問題中的確定條件,影響問題的解決。三是數學思維定勢的消極性。由于高中學生已經有相當豐富的解題經驗,因此,有些學生往往對自己的某些想法深信不疑,很難使其放棄一些陳舊的解題經驗,思維陷入僵化狀態,不能根據新的問題的特點作出靈活的反應,常常阻抑更合理有效的思維甚至造成歪曲的認識。

 3.高中學生數學思維障礙的突破

 3.1 在高中數學起始教學中

 教師必須著重了解和掌握學生的基礎知識狀況,尤其在講解新知識時,要嚴格遵循學生認知發展的階段性特點,照顧到學生認知水平的個性差異,強調學生的主體意識,發展學生的主動精神,培養學生良好的意志品質;同時要培養學生學習數學的興趣。興趣是最好的老師,學生對數學學習有了興趣,才能產生數學思維的興奮灶,也就是更大程度地預防學生思維障礙的產生。教師可以幫助學生進一步明確學習的目的性,針對不同學生的實際情況,因材施教,分別給他們提出新的更高的奮斗目標,使學生有一種“跳一跳,就能摸到桃”的感覺,提高學生學好高中數學的信心。

 3.2 重視數學思想方法的教學,指導學生提高數學意識

 數學意識是學生在解決數學問題時對自身行為的選擇,它既不是對基礎知識的具體應用,也不是對應用能力的評價,數學意識是指學生在面對數學問題時該做什么及怎么做,至于做得好壞,當屬技能問題,有時一些技能問題不是學生不懂,而是不知怎么做才合理,有的學生面對數學問題,首先想到的是套那個公式,模仿那道做過的題目求解,對沒見過或背景稍微陌生一點的題型便無從下手,無法解決,這是數學意識落后的表現。

 3.3 誘導學生暴露其原有的思維框架,消除思維定勢的消極作用

 在高中數學教學中,我們不僅僅是傳授數學知識,培養學生的思維能力也應是我們的教學活動中相當重要的一部分。而誘導學生暴露其原有的思維框架,包括結論、例證、推論等對于突破學生的數學思維障礙會起到極其重要的作用。使學生暴露觀點的方法很多。例如,教師可以與學生談心的方法,可以用精心設計的診斷性題目,事先了解學生可能產生的錯誤想法,要運用延遲評價的原則,即待所有學生的觀點充分暴露后,再提出矛盾,以免暴露不完全,解決不徹底。有時也可以設置疑難,展開討論,疑難問題引人深思,選擇學生不易理解的概念,不能正確運用的知識或容易混淆的問題讓學生討論,從錯誤中引出正確的結論,這樣學生的印象特別深刻。而且通過暴露學生的思維過程,能消除消極的思維定勢在解題中的影響。

當前,素質教育已經向我們傳統的高中數學教學提出了更高的要求。但只要我們堅持以學生為主體,以培養學生的思維發展為己任,則勢必會提高高中學生數學教學質量,擺脫題海戰術,真正減輕學生學習數學的負擔,從而為提高高中學生的整體素質作出我們數學教師應有的貢獻。

 參考文獻

[1] 任樟輝《數學思維論》(1999年9月版)

高數與高中數學的區別范文5

關鍵詞 數學思維 數學思維障礙

高中數學的數學思維雖然并非總等于解題,但我們可以這樣講,高中學生的數學思維的形成是建立在對高中數學基本概念、定理、公式理解的基礎上的;發展高中學生數學思維最有效的方法是通過解決問題來實現的然而,在學習高中數學過程中,我們經常聽到學生反映上課聽老師講課,聽得很"明白",但到自己解題時,總感到困難重重,無從入手;有時,在課堂上待我們把某一問題分析完時,常??吹綄W生拍腦袋:"唉,我怎么會想不到這樣做呢?"事實上,有不少問題的解答,同學發生困難,并不是因為這些問題的解答太難以致學生無法解決,而是其思維形式或結果與具體問題的解決存在著差異,也就是說,這時候,學生的數學思維存在著障礙。這種思維障礙,有的是來自于我們教學中的疏漏,而更多的則來自于學生自身,來自于學生中存在的非科學的知識結構和思維模式。因此,研究高中學生的數學思維障礙對于增強高中學生數學教學的針對性和實效性有十分重要的意義。如何減輕學生學習數學的負擔?如何提高我們高中數學教學的實效性?本文通過對高中學生數學思維障礙的成因及突破方法的分析,以起到拋磚引玉的作用

一.高中數學思維障礙的具體表現

由于高中數學思維障礙產生的原因不盡相同,作為主體的學生的思維習慣、方法也都有所區別,所以,高中數學思維障礙的表現各異,具體的可以概括為:

1.數學思維的膚淺性:由于學生在學習數學的過程中,對一些數學概念或數學原理的發生、發展過程沒有深刻的去理解,一般的學生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無法擺脫局部事實的片面性而把握事物的本質。由此而產生的后果:

2.學生在分析和解決數學問題時,往往只順著事物的發展過程去思考問題,注重由因到果的思維習慣,不注重變換思維的方式,缺乏沿著多方面去探索解決問題的途徑和方法。

3.缺乏足夠的抽象思維能力,學生往往善于處理一些直觀的或熟悉的數學問題,而對那些不具體的、抽象的數學問題常常不能抓住其本質,轉化為已知的數學模型或過程去分析解決。

4.數學思維定勢的消極性:由于高中學生已經有相當豐富的解題經驗,因此,有些學生往往對自己的某些想法深信不疑,很難使其放棄一些陳舊的解題經驗,思維陷入僵化狀態,不能根據新的問題的特點作出靈活的反應,常常阻抑更合理有效的思維甚至造成歪曲的認識

由此可見,學生數學思維障礙的形成,不僅不利于學生數學思維的進一步發展,而且也不利于學生解決數學問題能力的提高。所以,在平時的數學教學中注重突破學生的數學思維障礙就顯得尤為重要。

二.高中學生數學思維障礙的突破

1.在高中數學起始教學中,教師必須著重了解和掌握學生的基礎知識狀況,尤其在講解新知識時,要嚴格遵循學生認知發展的階段性特點,照顧到學生認知水平的個性差異,強調學生的主體意識,發展學生的主動精神,培養學生良好的意志品質;同時要培養學生學習數學的興趣。興趣是最好的老師,學生對數學學習有了興趣,才能產生數學思維的興奮灶,也就是更大程度地預防學生思維障礙的產生。教師可以幫助學生進一步明確學習的目的性,針對不同學生的實際情況,因材施教,分別給他們提出新的更高的奮斗目標,使學生有一種"跳一跳,就能摸到桃"的感覺,提高學生學好高中數學的信心。

2.重視數學思想方法的教學,指導學生提高數學意識。數學意識是學生在解決數學問題時對自身行為的選擇,它既不是對基礎知識的具體應用,也不是對應用能力的評價,數學意識是指學生在面對數學問題時該做什么及怎么做,至于做得好壞,當屬技能問題,有時一些技能問題不是學生不懂,而是不知怎么做才合理,有的學生面對數學問題,首先想到的是套那個公式,模仿那道做過的題目求解,對沒見過或背景稍微陌生一點的題型便無從下手,無法解決,這是數學意識落后的表現。數學教學中,在強調基礎知識的準確性、規范性、熟練程度的同時,我們應該加強數學意識教學,指導學生以意識帶動雙基,將數學意識滲透到具體問題之中。

3.誘導學生暴露其原有的思維框架,消除思維定勢的消極作用。在高中數學教學中,我們不僅僅是傳授數學知識,培養學生的思維能力也應是我們的教學活動中相當重要的一部分。而誘導學生暴露其原有的思維框架,包括結論、例證、推論等對于突破學生的數學思維障礙會起到極其重要的作用

高數與高中數學的區別范文6

關鍵詞:心理素養 學習興趣 學習方法

高一的學生經過緊張的中考復習,考取了自己理想的高中,必有些學生產生"松口氣"想法,入學后無緊迫感。也有些學生有畏懼心理,他們在入學前,就耳聞高中數學很難學,高中數學課一開始也確是些難理解的抽象概念,如映射、集合、異面直線等,使他們從開始就處于怵頭無趣的被動局面。以上這些因素都嚴重影響高一新生的學習質量。那么怎樣才能學好高中數學呢?

1.良好的心理素養、癡迷的學習興趣是學好數學的前提。

喜愛也就是做一件事的理由和把事情堅持下去的最強動力。良好的心理素養、近乎癡迷的興趣是高效率學習數學的前提,也是在最后的考試中取勝的必要條件。大多數同學都會覺得繁重的數學學習幾乎讓人喘不過氣來,遇到一道難解的題,或者期末考試考砸了,更是郁悶至極;心情不愉快的時候總會有的,怎么辦呢?是繼續硬著頭皮學習嗎?不是,而是要迅速讓自己擺脫不愉快,達到最佳的學習狀態。遇到這種情形,可以找一個自己信任的人,把自己的不快傾訴出來,尋求他人的理解,這樣,就能很快收回煩惱的心,專心學習,也才能保證學習的效率。怎么樣?試試看就知道了!此外,由于學習太緊張,再加上學習中難免會有這樣那樣的不順心的事情,每天都要找一個時間,最好是在傍晚的時候,走出教室、走出家門,在安靜的地方走一走,放松一下,回顧一下一天的學習和生活,表面上看起來這樣做耽誤了一些時間,但是,有了一個輕松愉快的心境,提高了學習效率,那點時間算不得什么,數學學習中、考場上,什么是心理的最高境界呢?一句話,“寵辱不驚”!也就是說,不管遇到什么樣的情況,都能興趣不減,心靜如水,沉穩對付;如果感到題目比較難,不好對付,能做到既不緊張也不失望,依然我行我素,全力以赴;反之,如果感到題目比較容易,也能做到不喜形于色,以至于放松了警惕,漏洞百出。也許,你已經有了這方面的感觸,比如有的時候感到題目非常容易,卻并沒有取得一個意料中的好成績;而有的時候,感到題目非常難,結果也沒有考的一塌糊涂!原因很簡單,不管平時的習題或考試題目怎么樣,都是大家來承受,決定你成績如何的不是題目的難易,也不是你的絕對成績,而是你在全體同學或考生中的位置,而是你是否發揮出了自己的水平。因而,不管遇到什么樣的情形,都要不受其影響,按照預定的計劃和步驟學習和考試,發揮出自己的最好水平。

2.事半功倍的方法是學好數學的手段。

(1)跳出題海。大家一定非常關心這個題目,因為物理難懂、化學難記、數學有做不完的題。但題目是數學的心臟,不做題是萬萬不行的。而擺面前的題目太多了,好像永遠也做不完。試試下面的方法:第一,在完成作業的基礎上分析一下每到題目都是怎么考察的,考察了什么知識點,這個知識點的考察還有沒有其他的方式;第二,繼續做題時,完全不必要每道題目都詳細的解出來了,只要看過之后,可以歸入上面分析過的題型,知道解題思路就可以跳過去了!這樣,對每個知識點都能把握其考試方式,這才是真正的提高。如果意識不到這一點,做一道題只是做了一道題,“就題論題”,不能跳出題外,看到本質,遇到新的題目,稍有一些不同就沒有辦法了,還談什么提高呢?又怎能擺脫讓你煩惱的題海呢?

(2)要重視數學概念的理解。高一數學與初中數學最大的區別是概念多并且較抽象,學起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達方式。例如,為什么函數y=f(x)與y=f-1(x)的圖象關于直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當f(x-l)=f(1-x)時,函數y=f(x)的圖象關于y軸對稱,而y=f(x-l)與y=f(1-x)的圖象卻關于直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。

(3)學習考場制勝的法寶。首先是要擺脫心理上的恐懼,可以這樣提醒自己,害怕什么呢,不管有多難,大家都和自己一樣。這樣自我心理暗示一段時間之后,心里就坦然平靜多了。其實學習和考試中最重要的不是要學或考的怎么怎么樣,而是能把自己的水平發揮出來,這也是超水平發揮的前提。大家不妨試一試,也許效果很好呢!其次,就是要有正確的學習和考試策略,做到“寵辱不驚”,特別是,遇到難題的時候,不要緊張??荚囍杏羞@樣一種現象,一旦遇到一個題目,作了好長時間還無法解決,就焦躁不安,嚴重影響后面的做題,進而也影響考試的成績。

亚洲精品一二三区-久久