數學建模的分析方法范例6篇

前言:中文期刊網精心挑選了數學建模的分析方法范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。

數學建模的分析方法

數學建模的分析方法范文1

【關鍵詞】 數學建模 建模方法 應用

【中圖分類號】 G424 【文獻標識碼】 A 【文章編號】 1006-5962(2012)06(b)-0035-01

數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫并解決實際問題的一種強有力的數學手段。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言,把它表述為數學式子,也就是數學模型,然后用通過計算得到的模型結果來解釋實際問題,并接受實際的檢驗。這個建立數學模型的全過程就稱為數學建模。

1 數學模型的基本概述

數學模型就是對于一個特定的對象為了一個特定目標,根據特有的內在規律,做出必要的簡化假設,運用適當的數學工具,得到的一個數學結構。數學結構可以是 數學公式,算法、表格、圖示等。數學模型法就是把實際問題加以抽象概括,建立相應的數學模型,利用這些模型來研究實際問題的一般數學方法。教師在應用題教學中要滲透這種方法和思想,要注重并強調如何從實際問題中發現并抽象出數學問題,如何用數學模型(包括數學概念、公式、方程、不等式函數等)來表達實際問題。

2 數學建模的重要意義

電子計算機推動了數學建模的發展;電子計算機推動了數學建模的發展;數學建模在工程技術領域應用廣泛。應用數學去解決各類實際問題時,建立數學模型是重要關鍵。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。要通過調查、收集數據資料,觀察和研究實際對象的固有特征和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然后利用數學的理論和方法去分折和解決問題。數學建模越來越受到數學界和工程界的普遍重視,已成為現代科技工作者重要的必備能力。

3 數學建模的主要方法和步驟:

3.1 數學建模的步驟可以分為幾個方面

(1)模型準備。首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特征。(2)模型假設。根據對象的特征和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建模至關重要的一步。(3)模型構成。根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。(4)模型求解。可以采用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,特別是計算機技術。(5)模型分析。對模型解答進行數學上的分析,特別是誤差分析,數據穩定性分析。

3.2 數學建模采用的主要方法包括

a.機理分析法。根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模型。(1)比例分析法:建立變量之間函數關系的最基本最常用的方法。(2)代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。(3)邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題解決對策中得到廣泛應用。(4)常微分方程:解決兩個變量之間的變化規律,關鍵是建立“瞬時變化率”的表達式。(5)偏微分方程:解決因變量與兩個以上自變量之間的變化規律。

b.數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型

可以包括四個方法:(1)回歸分析法(2)時序分析法(3)回歸分析法(4)時序分析法

c.其他方法:例如計算機仿真(模擬)、因子試驗法和人工現實法

4 數學建模應用

數學建模應用就是將數學建模的方法從目前純競賽和純科研的領域引向商業化領域,解決社會生產中的實際問題,接受市場的考驗??梢陨孀闫髽I管理、市場分類、經濟計量學、金融證券、數據挖掘與分析預測、物流管理、供應鏈、信息系統、交通運輸、軟件制作、數學建模培訓等領域,提供數學建模及數學模型解決方案及咨詢服務,是對咨詢服務業和數學建模融合的一種全新的嘗試。例如北京交通大學在校學生組建了國內第一支數學建模應用團隊,積極地展開數學建模應用推廣和應用。

5 努力倡導數學建?;顒拥囊?/p>

5.1 積極開展數學建?;顒?鼓勵大家積極參與

為了提高學生的數學建模能力,學??梢蚤_展數學建?;顒?可以是競賽制的和非競賽制的,應當對成績比較優秀的學生給予一定的獎勵,從而提高學生的積極性。建?;顒右幸幷轮贫?要比較正規化,否則可能會達不到預期效果,而且建模過程競賽要保證公平、公開,保證學生不受干擾影響。

5.2 鞏固數學基礎,激發學生學習興趣

首先數學建模需要扎實學生的數學基礎,同時學生要具備較好的理論聯系實際的能力以及抽象能力,還有就是要激發學生的學習興趣,興趣是學習的最好老師,假設教學課堂中過于枯燥無味,學生容易產生厭倦情緒,不利于學習。數學建模過程本質是比較有趣的過程,是對實際生活進行簡化的一個過程,生動和有實際價值的。鼓勵學生相互交流,促使學生用建模的思維方法去思考和解決生活中的實際問題,表現優秀的同學可以適度給予獎勵評價。

總之,數學建模能力的培養應貫穿于學生的整個學習過程,積極地激發學生的潛能。數學應用與數學建模目的是要通過教師培養學生的意識,教會學生方法,讓學生自己去探索?研究?創新,從而提高學生解決問題的能力。 隨著學生參加數模競賽的積極性廣泛提高,賽題也越來越向實用性發展??梢哉f正是數學建模競賽帶動了數模一步一步走向生產和實踐中的應用。所以,數學建模廣泛應用必成為了社會的發展趨勢。

參考文獻

[1] 鄭平正.淺談數學建模在實際問題中的應用[J].考試(教研版).2007(01).

數學建模的分析方法范文2

關鍵詞:數學建模;高中數學;解題策略

引言

我國中學的數學教育歷來只重視學生對書面知識的掌握,而忽視了學生運用數學知識解決實際問題能力的培養。數學的教育并未培養出學生獨立解決問題以及創造性思考的能力,為了適應時代的發展,建立能夠培養學生自主能力的教學模式。在此背景下,數學建模在中學階段數學教學中的應用將成為未來的一種趨勢。

一、數學建模的定義和方法

1.1數學建模在中學中的定義

通過使用數學語言把現實問題進行精簡加工得到的數學結構,就是現實問題的數學模型,相關的概念、公式、方程、數量關系等都是它的表現形式。而數學建模就是把現實問題抽象加工成數學模型,并對模型進行求解,驗證模型是否合理的過程。中學階段的數學建模,就是運用中學生所學的數學知識,把現實中遇到的問題簡化抽象成數學模型,對模型進行求解并解釋實際問題的過程。

1.2數學建模的方法

中學階段有關數學建模的研究更加側重于將建模作為一種解題的方法,而不是研究建模的完整過程,要求學生運用建模的思想及相關理論來求解數學問題目。具體操作要簡單的多,可以把運用數學建模思想來解題的方法,簡單的分為以下幾個步驟:(1)通過分析已知條件,歸納出實際問題中隱含的數學關系,確定模型的類型,建立起數學模型;(2)使用學到的數學知識,對模型進行求解;(3)把求到的解代入到問題中來進行檢驗。

二、模型列舉、分析及解題策略

2.1高中階段數學模型的列舉與分析

當前高中教育階段,在數學知識體系中所涉及的數學模型按照類型及與問題的相關性來分,可以分為:(1)與數量有關的模型,包括:函數、方程、不等式、數列、概率等模型;(2)與形狀有關的模型,包括:平面幾何、立體幾何模型;(3)與位置有關的模型,包括:解析幾何、極坐標等模型;(4)與最值有關的模型:線性規劃模型。對以上部分模型的分析如下:

(1)函數模型:

函數模型是對實際問題通過運用數學知識進行歸納加工建立相關量之間的函數關系,發現其中的變化規律,進而建立起函數模型。在中學的數學中函數模型有多種,而實際問題中包含的函數知識也十分普遍,如:一次函數,在現實中解決成比例關系的問題;二次函數,可以應用在利潤、成本、產量等問題的解決;冪函數,可以應用在求最值方面;指數函數,則可以解決增長率、利率等方面:對數函數,可以應用在產品的產量、人口增長等方面;分段函數,可以應用與稅費的分段繳納、出租車票價等方面。

(2)方程與不等式模型

現實的問題中含有許多等量或不等量的關系,方程和不等式模型就是用未知數對這些等量與不等量關系的表示。高中階段的方程主要被用來求解函數或不等量關系式,涉及的不等式模型主要有:高次不等式,可以解Q增長率、商品銷售以及黃金分割等現實問題;分式不等式,多用于工程或行程問題;均值不等式,多用于求最值以及證明其它不等式等問題。

(3)概率模型

概率模型是對隨機現象發生規律描述的一種數學模型,用于對事件可能性的預測。在現實生活中概率模型的應用隨處可見,如對天氣、中獎概率、次品出現概率的預測等,概率模型又分為隨機事件概率和對立試驗模型。

2.2運用數學建模解題的策略

通過對高中階段常見數學模型的分析,我們可以得到一些建立模型的方法和求解模型的技巧。

(1)建立模型的方法:通過分析變量的變化規律來確定模型的關系分析法;利用獲得的數據或信息,畫出變量的有關圖形,確定模型的圖像分析法;通過對特殊結果的觀察發現規律的數學歸納法,還有示意圖分析法和數量關系式等

(2)模型求解的技巧:通過待定系數法求函數模型的參數;使用特殊值法對抽象模型求解;通過對數據關系列表格來尋找相關關系式;另外,對問題要先做歸類,判斷變量的離散屬性,在建模;還要考慮模型的取值范圍,建模要有實際意義。

三、在課堂中融入建模方法的建議

3.1有關學校方面的建議

(1)在學校老師自己編制的校本課程中多設置與數學建模的思想和方法相關的課程,在根據數學教學改革的需求在選修課中加入相關的課程,激發學生對數學建模的興趣。

(2)加強對學校數學教師進行建模方面的培訓,提升教師對數學建模的認識和實際運用的能力,只有老師熟練掌握使用數學建模來解題的方法,才能為學生進行有效的指導解決學生在建模運用中的困惑。

(3)學校還要重視數學建模在日常中的學習,多安排一些與數學建模有關的活動和講座,訂閱相關的期刊和雜志,豐富學生課外獲得知識的途徑,普及相關的理論知識。

3.2有關數學課堂上的建議

(1)目前,有部分老師沒有意識到數學建模在教學中的作用,認為不需要對學生進行專門的數學建模應用能力的培養,因此,老師應該首先轉變自己的觀念,重視運用數學建模方法解題的教學方式。

(2)在數學教學過程中,以學生為主體運用數學建模的思想來引導學生獨立思考的能力,實現教學的目標;運用數學建模的方法來講解習題的解題過程,在習題中加入一些背景知識,讓學生理會題目背后的實際意義;在課下的作業中可以設計一些能夠體現數學建模思想的開放性的題目,讓學用獨立思考或分組討論的方式來建模求解,使學生與數學建模的方法有更多的接觸。

數學建模的分析方法范文3

[關鍵詞]高中數學 建模教學

1開展數學建模教學的意義

1.1解決實際問題的需要。目前國際數學界普遍贊同通過開展數學建模活動和在數學教學中推廣使用現代化技術來推動數學教育改革。美國、德國、日本等發達國家普遍都十分重視數學建模教學,把數學建?;顒訌拇髮W生向中學生轉移是近年國際數學教育發展的一種趨勢。我國的數學教育在很長一段時間內對于數學與實際、數學與其它學科的聯系未能給予充分的重視,因此,高中數學在數學應用和聯系實際方面需要大力加強。我國普通高中新的數學教學大綱中也明確提出要切實培養學生解決實際問題的能力,要求增強應用數學的意識,能初步運用數學模型解決實際問題。這些要求不僅符合數學本身發展的需要,也是社會發展的需要。因此我們的數學教學不僅要使學生知道許多重要的數學概念、方法和結論,而且要提高學生的思維能力,培養學生自覺地運用數學知識去處理和解決日常生活中所遇到的問題,從而形成良好的思維品質。而數學建模通過”從實際情境中抽象出數學問題,求解數學模型,回到現實中進行檢驗,必要時修改模型使之更切合實際,這一過程,促使學生圍繞實際問題查閱資料、收集信息、整理加工、獲取新知識,從而拓寬了學生的知識面和能力。數學建模將各種知識綜合應用于解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一,是改善學生學習方式的突破口。因此有計劃地開展數學建模活動,將有效地培養學生的能力,提高學生的綜合素質。

1.2開展數學建模的必要性。數學建??梢蕴岣邔W生的學習興趣,培養學生不怕吃苦、敢于戰勝困難的堅強意志,培養自律、團結的優秀品質,培養正確的數學觀。具體的調查表明,大部分學生對數學建模比較感興趣,并不同程度地促進了他們對于數學及其他課程的學習。有許多學生認為:數學源于生活,生活依靠數學,平時做的題都是理論性較強,實際性較弱的題,都是在理想化狀態下進行討論,而數學建模問題貼近生活,充滿趣味性。數學建模能培養學生應用數學進行分析、推理、證明和計算的能力;用數學語言表達實際問題及用普通人能理解的語言表達數學結果的能力;應用計算機及相應數學軟件的能力;獨立查找文獻,自學的能力,組織、協調、管理的能力;創造力、想象力、聯想力和洞察力。

2中學數學建模教學的基本理念

2.1使學生體會數學與自然及人類社會的密切聯系,體會數學的應用價值,培養數學的應用意識,增進對數學的理解和應用數學的信心。

2.2學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活中的問題,進而形成勇于探索、勇于創新的科學精神。

2.3以數學建模為手段,激發學生學習數學的積極性,學會團結協作,建立良好人際關系、相互合作的工作能力。

2.4以數學建模方法為載體,使學生獲得適應未來社會生活和進一步發展所必需的重要數學事實(包括數學知識、數學活動經驗)以及基本的思想方法和必要的應用技能。

3高中數學建模教學的一些設想

3.1在教學中傳授初步的數學建模知識。進行數學建模教學的主要目的是要培養他們的數學應用意識,掌握數學建模的方法,因此,根據數學建模的過程,在教學時將數學建模中最基本的過程教給學生。

3.2在教學中培養學生的數學建模意識。運用數學建模解決實際問題,必須首先通過觀察分析,提練出實際問題的數學模型,然后再把數學模型納入某知識系統去處理,這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合類比能力。學生的這種能力的獲得不是一朝一夕的事情,需要把數學建模意識貫穿在教學始終,也就是要不斷的引導學生用數學思維的觀點去觀察、分析和表示各種事物關系、空間關系和數學信息,從紛繁復雜的具體問題中抽象出我們熟悉的數學模型,進而達到用數學模型來解決實際問題,使數學建模意識成為學生思考問題的方法和習慣。通過教師的潛移默化,經常滲透數學建模意識,學生可以從各類大量的建模問題中逐步領悟到數學建模的廣泛應用,從而激發學生去研究數學建模的興趣,提高他們運用數學知識進行建模的能力。

數學建模的分析方法范文4

關鍵詞:高校;數學;建模方法;教學;策略;研究

1高校數學建模方法的教學現狀分析

1.1課堂教學尚未脫離傳統思想

從我國高校數學課堂教學的現狀來看,傳統的教學理念始終束縛著老師們的思想,他們在數學建模課程的講解中,仍舊以講授為主,以理論化的學習為基礎,給予高校學生最多的教學理念仍舊是灌輸式教學,這種教學模式是當代大學生綜合能力的培養與提高的枷鎖,更讓數學建模方法不能在實踐中得到具體的應用。

1.2教學策略缺乏個性化選擇

進行數學建模的方法多種多樣,每一種方法都具有不同的應用范圍,能解決不同的問題,只有對不同的建模方法采用不同的策略進行課堂教學,才能讓學生更容易吸引和掌握。

2數學建模方法的教學策略

2.1建模方法的多重聯合性

多重聯合不僅可以讓大學生把多種數學建模方法進行聯系與融合,還能通過它們相互之間的關聯性而進行有機的組合,在實際的問題解決中發揮出建模方法的最大效用。

2.2建模方法的階級遞進

雖然數學建模方法是一個實現數學知識與實踐應用相結合的工具,是需要大學生們熟練掌握和嫻熟運用的,但在實際的教學過程中,因為每個學生的資質不同,接受知識的快慢也不一樣,再加上他們智力水平的差異性,對于數學建模方法接收的程度也會受到影響。而老師要想讓每個學生都能達到數學建模合理運用的目的,就必須要掌握每一位學習的特點,從他們的數學實際出發,因材施教,階級遞進,這樣才能讓各個階層的學生都能夠得到鍛煉和提高。而且數學建模的過程本身就是一個比較抽象的過程,對于初學者來說,會覺得非常的困難,只有掌握了建模的意義和過程,才能在實踐應用中慢慢的去領會,繼而達到實際運用的效果。

2.3建模方法的交叉設計

數學建模方法教學的目的就是要解決生活當中的實際性問題,所以在進行建模方法的學習時,一定要把現實情境與理論知識交叉進行學習,因為離開了實際問題的數學模型毫無用武之地,只有把模型知識應用到具體的問題情境當中,才能讓它發揮作用,才能讓大學生們對數學建模的學習更感興趣,促進他們綜合能力的提升。

2.4建模方法的實踐應用

數學建模的分析方法范文5

關鍵詞:數學建模 數學應用意識 數學建模教學

一、數學建模是從現實問題中建立數學模型的過程。

在對實際問題本質屬性進行抽象提煉后,用簡潔的數學符號、表達式或圖形,形成便于研究的數學問題,并通過數學結論解釋某些客觀現象,預測發展規律,或者提供最優策略.它的靈魂是數學的運用并側重于來自于非數學領域,但需要數學工具來解決的問題.這類問題要把它抽象,轉化為一個相應的數學問題,一般可按這樣的程序:進行對原始問題的分析、假設、抽象的數學加工.數學工具、方法、模型的選擇和分析.模型的求解、驗證、再分析、修改假設、再求解的迭代過程.

數學建??梢蕴岣邔W生的學習興趣,培養學生不怕吃苦、敢于戰勝困難的堅強意志,培養自律、團結的優秀品質,培養正確的數學觀。具體的調查表明,大部分學生對數學建模比較感興趣,并不同程度地促進了他們對于數學及其他課程的學習.有許多學生認為:"數學源于生活,生活依靠數學,平時做的題都是理論性較強,實際性較弱的題,都是在理想化狀態下進行討論,而數學建模問題貼近生活,充滿趣味性;數學建模使我更深切地感受到數學與實際的聯系,感受到數學問題的廣泛,使我們對于學習數學的重要性理解得更為深刻"。數學建模能培養學生應用數學進行分析、推理、證明和計算的能力;用數學語言表達實際問題及用普通人能理解的語言表達數學結果的能力;應用計算機及相應數學軟件的能力;獨立查找文獻,自學的能力,組織、協調、管理的能力;創造力、想象力、聯想力和洞察力。由此,在高中數學教學中滲透數學建模知識是很有必要的。

二、那么當前我國高中學生的數學建模意識和建模能力如何呢?

學生數學建模意識和建模能力的現狀不容樂觀。學生在數學應用能力上存在的一些問題:(1)數學閱讀能力差,誤解題意。(2)數學建模方法需要提高。(3)數學應用意識不盡人意數學建模意識很有待加強。新課程標準給數學建模提出了更高的要求,也為中學數學建模的發展提供了很好的契機,相信隨著新課程的實施,我們高中生的數學建模意識和建模能力會有大的提高!

三、那么高中的數學建模教學應如何進行呢?

數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。不同于傳統的教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力。數學建模以學生為主,教師利用一些事先設計好的問題,引導學生主動查閱文獻資料和學習新知識,鼓勵學生積極開展討論和辯論,主動探索解決之法。教學過程的重點是創造一個環境去誘導學生的學習欲望、培養他們的自學能力,增強他們的數學素質和創新能力,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。

中學數學建模的目的旨在培養學生的數學應用意識,掌握數學建模的方法,為將來的學習、工作打下堅實的基礎。在教學時將數學建模中最基本的過程教給學生:利用現行的數學教材,向學生介紹一些常用的、典型的數學模型。如函數模型、不等式模型、數列模型、幾何模型、三角模型、方程模型等。教師應研究在各個教學章節中可引入哪些數學基本模型問題,如儲蓄問題、信用貸款問題可結合在數列教學中。教師可以通過教材中一些不大復雜的應用問題,帶著學生一起來完成數學化的過程,給學生一些數學應用和數學建模的初步體驗。

四、在教學的過程中,引入數學建模時還應該注意以下幾點:應努力保持自己的"好奇心",開通自己的"問題源",儲備相關知識.這一過程也可讓學生從一開始就參與進來,使學生提高自學能力后自我探究。

將數學建模思想引入數學課堂要結合實際,這是關鍵.學生在課堂中解決的實際問題即建模材料必須經過一定的加工,否則有可能過于復雜,有些問題的數學結論可能偏離生活實際太多,也很正常。

數學課堂中的建模能力必須與相應的數學知識結合起來.同時還應該通過解決實際問題(建模過程)加深對相應的數學知識的理解。

數學建模的分析方法范文6

關鍵詞:數學建模思想;大學數學教學;探討

作者簡介:賀愛娟(1979-),女,山東日照人,煙臺大學文經學院基礎教學部,講師。(山東 煙臺 264005)

基金項目:本文系煙臺大學文經學院科研基金項目(項目編號:2011JYB001)的研究成果。

中圖分類號:G642.421 文獻標識碼:A 文章編號:1007-0079(2013)31-0082-02

數學建模主要是通過運用數學知識解決實際問題的全過程,訓練學生綜合運用數學知識去刻畫實際問題,提煉數學模型,處理實際數據,分析解決實際問題的能力。[1]對于數學基礎功底薄弱,未來將要走向一線工作崗位的大學生來講,數學建模思想在數學教學過程中的應用,有利于他們快速理解掌握基礎知識,發散思維,了解數學解決實際生活問題的作用,有利于學生畢業后獨自快速接受工作技能,激發創新思維,表現出良好的綜合素質。

一、數學建模思想在大學數學類課程教學中融合的必要性

隨著計算機的廣泛應用,我國正在迎來一個手動化、機械化向信息化、自動化加速轉變的社會。高科技的社會本質上是數學應用的社會,一切科學和工程技術人員的教育必須包括數學和計算科學的更多內容。數學建模思想已在科學研究、教學性研究、人才市場需要等方面得到了充分的應用,在天氣和氣候預報、機械設計和交通控制、電子設計自動化、生物科學、材料科學等領域,正急需通過數學與計算機的結合來構建各類模型解決一些重大問題,比如Navier-Stokes方程成為流體力學建模的基本方程、MAXWELL方程組成為描述電磁學的基本規律。[2]數學的思想和方法已經滲透到生產、生活和科研的各個角落,發揮著巨大作用。通過數學和計算機科學的結合成為工程設計中的關鍵工具,了解和掌握數學建模知識并能充分應用數學建模的思想和方法,可以讓學生具有更好的快速適應和處理問題的能力,是當代大學生必須具備的基本素質。培養學生這種素質的最佳方法就是在高等數學等基礎課程的理論學習過程中融入數學建模思想,這將起到理論和模型互相映射,提高學生的理解能力和想象能力。

二、數學建模思想與大學數學類課程教學的融合切入點

1.從應用數學出發

數學建模主要是通過運用數學知識解決生活中遇到實際問題的全過程。要讓數學建模思想與大學數學教學課程進行有效的融合,最佳切入點就是課堂上把用數學解決生活中的實際問題與教學內容相融合,以應用數學為導向,訓練學生綜合運用數學知識去刻畫實際問題、提煉數學模型、處理實際數據、分析解決實際問題的能力,培養學生運用數學原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸的行為,多引入應用數學的內容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學方法,培養引導學生樹立應用數學建模解決實際問題的思想。

2.從數學實驗做起

要加強獨立學院學生進行數學實驗的行為,筆者認為數學建模與數學實驗有著密切的聯系,兩者都是從解決實際問題出發,當前的大學生數學實驗基本上是應用數學軟件、數值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數學實驗的全過程就是數學建模思想的啟發過程。但是我國的教育資源和教學方針限制了獨立學院學生的學習環境和學習資源,能夠進行數學實驗的條件還是有限的。即使個別有實驗能力的學校,也未能進行充分利用,數學實驗課的內容隨意性較大,有些院校將其降格為軟件學習課程或初級算法課。根據調研,目前大部分獨立學院未開設此類課程,這是數學建模思想與大學數學教學課程融合的一大損失,不利于學生創新思維能力的提高。各校應當積極創造條件,把數學實驗課設為大學數學的必修課,爭取設立數學建模選修課,并積極探索、逐步實現把數學建模的思想和方法融入大學數學的主干課程。

3.從計算機應用切入

數學是為理、工、經、管、農、醫、文等眾多學科服務的基礎工具,它在不同的領域因為應用程度不同而導致被重視的程度不同。但在當今的信息化時代,計算機的廣泛應用和計算技術的飛速發展,使科學計算和數值模擬已成為絕大多數學科的必要工具和常用手段。數學在不同學科領域有了共同的主題,即應用數學建模,通過計算機對各自領域的科學研究、生活問題等進行模擬分析,這成為數學建模思想在跨學科領域交流和傳播的一個重要途徑。每個領域的教學可以計算機應用為切入點,讓數學建模思想與數學授課無縫結合,在提高學生掌握知識能力、挖掘培養創新思維的同時,增加了大學數學課程內容的豐富性、實用性,促進教學手段變革和創新。因此,大學應以適應現代信息技術發展的形勢和學生將來的需求為契機,加快改進大學數學課程教學方式,把數學建模的思想和方法以及現代計算技術和計算工具盡快融入大學數學的主干課程當中。

三、探索適合獨立學院學生的數學建模教學內容

大學數學課程是大學工科各專業培養計劃中重要的公共基礎理論課,其目的在于培養工程技術人才所必備的數學素質,為培養我國現代化建設需要的高素質人才服務。數學建模課程的必修化,要從能夠擴充學生的知識結構,培養學生的創造性思維能力、抽象概括能力、邏輯推理能力、自學能力、分析問題和解決問題能力的角度出發,建立適合獨立學院學生的數學建模教學內容。日前獨立學院開展數學建?;顒由婕皟热葺^淺,缺少相應的數學建模和數學實驗方而的教材。筆者近幾年通過承擔此類課題的研究,認為應該加強以下內容的建設:

1.加強必修課

大學數學系列課程主要包括“高等數學”、“線性代數”、“概率論與數理統計”、“運籌學”和“數學建?!钡?,其核心部分是“高等數學”,所以必須加強核心課程的重點講解,同時進行輔助授課。對主修數學的學生,加強對計算機語言和軟件的學習,對數學原理進行剖解分析,多分析運行數學解決的社會生活問題,多設定課程設計工作。學生通過對科學問題、生活問題的深入研究,結合自己的課程設計,建立數學建模,讓數學建模思想滲透到整個學習過程中。對非數學領域的問題,引導學生通過計算機軟件的學習,建模解決專業中遇到的實際問題。比如通用的CAD等基于數學理論,解決不同領域的數學建模問題,以便將來適應社會的需要。

2.開設選修課

拓展知識領域,讓學生可以通過選修數學建模、運籌學、開設數學實驗(介紹Matlab、Maple等計算軟件課程),增加建立和解答數學模型的方法和技巧。[3]比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數學模型方便百姓自己計算的應用。這個模型單靠數學和經濟學單方面的知識是不夠的,必須把數學與經濟學聯系在一起,才能有效解決生活中的問題。

3.積極組織學生開展或是參加數學建模大賽

比賽是各個選手充分發揮水平、展示自己智慧的途徑,也是數學建模思想傳播的最好手段。比賽可以讓各個選手發現自己的不足,尋找自身數學建模出發點的缺陷,通過交流,還可以拓展學生思維。因此,有必要積極組織學生參入初等數學知識可以解決的數學模型、線性規劃模型、指派問題模型、存儲問題模型、圖論應用題等方面的模擬競賽,通過參賽積累大量數學建模知識,促進數學建模在教學中扮演更重要的角色。教師應該對歷年的全國大學生數學建模競賽真題進行認真的解讀分析,通過對有意義的題目,如2012年的《葡萄酒的評價》、《太陽能小屋的設計》,2011年的《交巡警服務平臺的設置與調度車燈線光源的計算》、2009年的《眼科病床的合理安排》等,與生活相關的例子進行講解分析,提高學生對數學建模的興趣和對模型應用的直觀的認識,實現學校應用型人才的培養。

4.加快教育方式的轉變

高等教育設立數學這門學科就是為了應用服務,內容應重點放在基本概念、定理、公式等在生活中的應用上。而傳統的高等數學,除了推導就是證明,因此,要對傳統內容進行優化組合,根據教學特點和學生情況推陳出新,要注重數學思想的滲透和數學方法的介紹,對高等數學精髓的求導、微分方法、積分方法等的授課要重點放在解決實際生活的應用上。要結合一些社會實踐問題與函數建立的關系,分析確定變量、參數,加強有關函數關系式建立的日常訓練。培養學生對一些問題的邏輯分析、抽象、簡化并用數學語言表達的能力,逐步將學生帶入遇到問題就能自然地去轉化成數學模型進行處理的境界,并能將數學結論又能很好反向轉化成實際應用。

四、注意的問題

21世紀我國進入了大眾教育時期,高校招生人數劇增,學生水平差距較大,需要學校瞄準正確的培養方向。通過對美國教學改革的研究,筆者認為我國的數學建模思想與大學數學教學課程融合必須盡快在大學中廣泛推進,但要注意一些問題:

第一,數學教學改革一定要基于學生的現實水平,數學建模思想融入要與時俱進。

第二,教學目標要正確定位,融合過程一定要與教學研究相結合,要在加強交流的基礎上不斷改進。

第三,大學生數學建模競賽的舉辦和參入,要給予正確的理解和引導,形成良性循環。要根據個人興趣愛好,注重個性,不應面面強求。

第四,傳統數學思想與現在數學建模思想必須互補,必修與選修課程的作用與角色要分清。數學主干課程的教學水平是大學教學質量的關鍵指標之一,具備數學建模思想是理工類大學生能否成為創新人才的重要條件之一。兩者的融合必將促進我國教學水平和質量的提高,為社會輸送更多的實用型、創新型人才。

參考文獻:

[1]段勇, 傅英定,黃廷祝,等.淺談數學建模思想在大學數學教學中的應用[J].中國大學教學,2007,(10):32-34.

亚洲精品一二三区-久久