前言:中文期刊網精心挑選了命題邏輯的推理規則范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。
命題邏輯的推理規則范文1
【關鍵詞】數理邏輯 離散數學 教學方法
【中圖分類號】G640 【文獻標識碼】B 【文章編號】2095-3089(2014)1-0254-02
離散數學作為計算機科學研究與學習的基本數學工具,其研究主要對象是離散量的結構及其相互關系。離散數學最難學習的是數理邏輯部分,這部分內容定義公式繁多,不易記憶和接受,學生學習比較困難,但它是培養學生邏輯推理能力的重要內容。因此,在離散數學教學中,講授數理邏輯部分是教學的重點。
一、離散數學中數理邏輯的教學內容
命題演算和謂詞演算是數理邏輯中兩個最重要最基本的部分。命題是指有具體意義的能判斷真假的陳述句。形象的說,如果將命題看作運算對象,如代數中的數字、字母或代數公式,而把邏輯聯結詞看作是運算符號,如代數中的“加、減、乘、除”,那么命題演算也就類似于代數運算。這種邏輯運算同代數運算一樣,有自己的運算規律。
謂詞演算也稱一階邏輯演算。它為了克服命題邏輯的局限性,將命題的內部結構分解成三部分:個體詞、謂詞和量詞,然后研究這種命題之間的邏輯推理關系。
二、數理邏輯的教學方法討論
(一)設置懸疑,激發學生興趣
為了激發學生的學習興趣,比較有效的方法是,可以在每部分內容前設置懸疑,提出一些與該內容相關的有趣問題,讓學生明白學習這部分內容有什么用。如在講授命題邏輯的推理理論之前,可以先提出如下問題:
例1:一邏輯學家被困一部落,酋長有意放行,于是對邏輯學家說:“現有兩扇門,一是自由,一是死亡,兩門可任開啟一扇。你可從兩戰士中選其一負責解答你任一問題(Y/N),兩戰士其一誠實,另一說謊?!边壿媽W家沉思片刻,向其一戰士發問,然后開門從容地離開。邏輯學家是怎樣發問的呢?
聽到這個問題,學生必定非常好奇,在此教師可說學完命題邏輯推理理論后,這個問題就可解決。于是學生會帶著好奇心,學習效果定會比預期好。
(二)深入生活,加強概念理解
在命題邏輯中的五種聯結詞中,學生最難掌握的是蘊涵聯結詞。其中重點是蘊涵聯結詞的前件和后件的區分。根據課本的定義[1]:
設p,q,為二命題,復合命題“如果p,則q”稱為p與q的蘊涵式,記做Pq,并稱p是蘊涵式的前件,q是蘊涵式的后件,稱作蘊涵聯接詞。并規定Pq為假當且僅當p為真q為假。
為了加深對此概念的理解,可以給出一些用蘊涵式表示的自然語言。如“只要p就q”,“因為p,所以q”,“p僅當q”,“只有q才p”,“除非p才q”,“除非p否則非q”等。在上述語句中,一個共性就是q是p的必要條件。
例2:“愛生活,愛拉芳?!?/p>
這是一句耳熟能詳的廣告詞,大家都覺得有一定道理,但同時也有一些的疑惑,問題的關鍵到底出現在哪里呢?我們設p:愛生活;q:愛拉芳,則原廣告可寫作Pq。假設愛拉芳,可以推斷出一個人愛生活,有品位;但反過來說,愛生活的人,一定會愛拉芳,用拉芳的產品嗎?結論顯然是否定的,這句廣告詞有意混淆蘊涵式的前件和后件,把必要條件說成充分條件。
(三)注重類比,抓住重點內容
數理邏輯部分的內容復雜,公式繁多,在教學中如何抓住重點,讓學生容易聽懂呢?這是每個老師都必須面對的一個非常嚴峻的問題。我們可以考慮將命題推理系統和一階邏輯推理系統對比,由于它們的字母表、合式公式和推理規則都很類似,把它們的相同和區別之處給學生講清楚,就可以幫助學生加深理解。又如在命題邏輯的等值演算中,教材給出了16個組基本的等值式:
教學時,可以給出學生其中的一個證明,剩余的讓學生自己去做。如證明(1),當A為F時,┑A為T,┑┑A為F;當A為T時,┑A為F,┑┑A為T,所以有A ┑┑A。這樣,學生就得到了等值式,而且對其他等值式也有了更加具體的認識,便于記憶。
為了改進離散數學中數理邏輯部分的教學方法,在分析數理邏輯的教學內容的基礎上,從以下四個方面著手來提高教學效果:激發學生興趣、加深概念理解、啟發學生思維和抓住重點內容。經我們在實際教學中的運用結果來看,效果較好。
參考文獻:
命題邏輯的推理規則范文2
關鍵詞:高新區 科技服務集成 平臺關鍵技術
中圖分類號:F294 文獻標識碼:A 文章編號:1674-098X(2014)06(c)-0041-02
新經濟時代,以新一代信息技術為核心的新技術革命席卷全球,信息技術與傳統產業不斷融合,有效推動了產業轉型升級。對于科技服務業如何利用新一代信息技術尤其是互聯網技術創新服務模式成為一道難題。2012年,江門高新區在國家科技部科技支撐計劃項目的支持下,按照“整合、共享、服務、創新”的基本思路,以產業轉型升級、企業創新能力提升的需求為牽引,建設面向江門特色產業集群的科技服務集成示范平臺,探索利用信息技術解決各類科技服務資源相對比較分散、企業與服務資源之間供求信息不對稱、缺乏協同創新機制等問題,以期利用示范平臺優化和集成科技服務,形成科技服務鏈各環節相互銜接、開放合作的新型商業模式,推動科技服務新業態的出現。
1 示范平臺總體框架
為充分了解江門高新區科技服務資源和重點產業、重點企業的科技服務需求,推動江門高新區科技服務集成示范平臺的建設,示范平臺課題組對江門高新區重點企業、服務機構和相關政府部門進行深入調研。此次調研涵蓋了江門高新區現有科技中介、研發中心、重點實驗室、工程技術中心、公共技術服務平臺、孵化器、檢測機構等科技服務資源,涉及研發設計、科技成果轉化、創新創業、科技金融、知識產權、檢測服務等多方面科技服務。通過此次調研,梳理了科技服務資源,制定了江門高新區科技服務發展規劃,并在此指導下,以需求為牽引、以服務資源為核心,確定了示范平臺“5+1”的總體框架,其中“5”是指服務注冊管理子系統、服務內容與子系統、服務交易管理子系統、產業信息資源庫子系統、后臺管理子系統五個子系統,“1”是指一個示范平臺門戶。
示范平臺門戶以科技服務目錄體系為特色、推動科技服務產品化,并按照用戶中心、園區概況、新聞中心、科技服務、特色產業、在線互動六個欄目進行信息展示。用戶中心為用戶提供注冊和登錄平臺的入口。園區概況用于展示江門高新區園區風貌、高新企業以及虛擬現實信息。新聞中心展示與園區相關的圖片新聞、新聞報道、通知公告、企業資訊信息。科技服務展示服務資訊、產品、研發機構、中介機構、服務平臺、載體等最新信息。特色產業為用戶展示與江門三大支柱型產業相關的國家、省內、地方的最新產業資訊以及重點企業信息。在線互動展示服務機構與高新技術企業之間進行服務需求、問題咨詢、網上投訴的信息。
服務注冊管理子系統的服務對象為服務機構用戶,實現對機構和服務產品的注冊、信息維護、收藏以及對同機構內用戶信息的管理功能,包括機構注冊管理、單位信息維護、單位用戶管理、服務產品注冊管理、我的收藏等五個功能模塊。
服務內容與子系統的服務對象是系統管理員,用于實現對機構、機構內用戶、服務產品、產品屬性、產品分類、網站內容的新建、審核、以及對服務需求的管理等功能,包括服務目錄管理、機構審核管理、機構庫管理、服務產品管理、服務需求對接管理、網站內容管理等六個功能模塊。
服務交易管理子系統的服務對象是科技服務需求機構和服務機構用戶,用于實現服務需求的提交、意向單的新建、服務產品的評價以及需求機構與服務機構用戶進行互動交流的功能,包括意向管理、投訴管理、評價管理、服務需求提交管理、問題咨詢與反饋等五個功能模塊。
產業信息資源庫子系統用于實現對產業資訊、產業支持政策的新建、和查看功能。
后臺管理子系統用于實現對用戶、配置項、文檔庫、系統參數設置以及與高新區服務平臺、江門高新區網站等熱點科技服務平臺接口的管理。
2 示范平臺建設關鍵技術分析
示范平臺引入了分布式文件系統(TFS)、數據庫集群(Mysql)、分布式索引(Solr)、消息總線(ActiveMQ)等基礎技術框架,形成了基于分布式環境的海量知識存儲、知識檢索、知識在線查看等關鍵支撐技術,提供開放的API接口規范,接口采用基于XML的Webservices技術,接口定義采用WSDL,支持Java、純HTTP GET/POST等一系列協議,基于BPEL(業務流程執行語言)標準明確定義業務流程,可以通過門戶、Web 應用程序或J2EE 應用程序以及API3中方式訪問流程以及總線提供的服務。在建設示范平臺過程中,主要涉及到的知識管理技術、智能搜索技術兩個關鍵技術。
2.1 基于產業集群科技服務的知識管理技術研究
(1)研究產業集群科技服務資源管理需求。
研究江門高新區產業集群科技服務資源特征,主要包括:非結構化數據、規模巨大、形式復雜(詞性多樣,如數詞、量詞、代詞、方位詞、嘆詞等;表現形式復雜,如文檔、視頻、圖片、地理位置信息等)、結構各異。根據服務資源特征確定服務資源管理需求,即應用知識分類、知識表示進行資源管理。產業集群科技服務資源的知識管理[1]是一個交互式、循環反復的整體過程。
(2)基于科技服務的知識管理技術研究。
從知識管理技術的定義來看,知識管理技術[2]本身并不是一項技術,而是一個技術體系,包括的技術內容異常繁多,覆蓋了知識生產、分享、應用以及創新的各個環節,同時又是多種信息技術的集成。針對產業集群科技服務資源的特征和知識管理需求,研究知識管理技術,主要包括:
(1)知識分類。
產業集群科技服務資源中的文檔、句子、詞組所表示的知識具有四大關系要素,即事實、規則、控制和元知識。
事實是有關問題環境的一些事物的知識,常以“…是…”的形式出現,表示靜態的知識。如事物的分類、屬性、事物間關系、科學事實、客觀事實等,事實是為人們共享的可公開獲得的公認的知識,在知識庫中屬低層的知識。如江門高新區成立于1992年8月。
規則是有關問題中與事物的行動、動作相聯系的因果關系知識,是動態的,常以"如果…那么…"形式出現。特別是啟發式規則專家提供的專門經驗知識,這種知識雖無嚴格解釋但很有用處。
控制是有關問題的求解步驟、技巧性知識,告訴怎么做一件事。也包括當有多個動作同時被激活時應選哪一個動作來執行的知識。
元知識是有關知識的知識,是知識庫中的高層知識。包括怎樣使用規則、解釋規則、校驗規則、解釋程序結構等知識。元知識與控制知識是有重迭的,對一個大的程序來說,以元知識或說元規則形式體現控制知識更為方便,因為元知識存于知識庫中,而控制知識常與程序結合在一起出現,從而不容易修改。
在建設示范平臺中,通過對科技服務資源中的文檔、句子、詞組進行中英文分詞;應用知識資源統計分析模型設計、知識資源統計分析軟件對詞之間的關系進行統計分析,尋找使用頻率較高的共現詞對之間的關系,實現知識的分類。
(2)知識表示。
對科技服務資源文檔、句子、詞組,首先基于問題歸約法、邏輯表示法、框架表示法等方法進行知識表示;在知識分類、知識表示的基礎上通過文檔空間的特征表示、潛在語義分析LSA等研究科技服務供給需求之間的匹配關系,確定科技服務資源各文檔、句子、詞組的分類,最終實現服務資源信息的智能推送。
①問題歸約法。
問題歸約是指從要解決的目標問題出發逆向推理,通過一系列變換把初始問題變換為子問題集合以及子問題的子問題集合,直至最后把初始問題歸約為一個平凡的本原問題集合。問題歸約表示的組成部分包括一個初始問題描述、一套把問題變換為子問題的操作符、一套本原問題描述。本原問題是指可直接得到答案的問題。
②邏輯表示法。
邏輯表示法是指將自然語言描述的知識,以謂詞、函數的形式來表示動作的主體、客體,進而以機器內碼表示。邏輯表示法研究的是假設與結論之間的蘊涵關系,通常采用歸結法或其他方法進行準確的推理。邏輯表示法主要分為命題邏輯和謂詞邏輯。
命題邏輯是數理邏輯的一種,處理簡單的陳述性命題。命題邏輯中的命題通常是不能細分的整體,所以命題邏輯無法研究不同命題之間內在的聯系。
謂詞邏輯相當于數學中的函數表示,采用謂詞合適公式和一階謂詞演算把要解決的問題變為一個有待證明的問題,然后采用消解定理和消解反演來證明一個新語句是從已知的正確語句導出的,從而證明這個新語句也是正確的。謂詞是指在命題中用來刻劃一個個體的性質或幾個個體之間關系的成分,通常用大寫英文字母表示,其中刻劃一個個體性質的詞稱為一元謂詞,刻劃n個個體之間關系的詞稱為n元謂詞。
③框架表示法。
框架是一種結構化表示法,通??蚣懿捎谜Z義網絡中的節點-槽-值表示結構,所以語義網絡可看做節點和弧線的集合,也可以視為框架的集合??蚣芡ǔS擅枋鍪挛锏母鱾€方面的槽組成,每個槽可以擁有若干個側面,而每個側面又可以擁有若干個值。框架的一個重要特性是其繼承性,即當子節點的某些槽值或側面值沒有被直接記錄時,可以從其父節點繼承這些值。一個框架結構可以是另一個框架的槽值,并且同一個框架結構可以作為幾個不同框架的槽值。
每一種知識表示方法各有特點,而且適用的領域也不同,如謂詞邏輯方法只適用于確定性、陳述性、靜態性知識,而對動態的、變化性、模糊性知識則很難表示;框架是一種結構化表示方法,表示的知識橫向關系不太明確等。因此,對于復雜的、深層次的知識,應根據需要表示知識的特征,來決定用二種或三種方法聯合表示。
2.2 基于產業集群服務資源的智能搜索技術研究
進行基于產業集群科技服務資源的智能搜索技術研究,首先需要構建科技服務本體庫,建立倒排序索引,然后在此基礎上,結合示范平臺服務機構、服務產品等資源數據庫構建查詢處理器,最終完成用戶查詢請求。
(1)構建科技服務本體庫。
在構建科技服務本體庫中,具體的流程為:首先對服務資源的文檔、句子、詞組進行中英文分詞處理;在知識管理技術基礎上,確定各詞、文檔之間的關系,實現科技服務資源詞、文檔的分類;邀請科技服務領域專家參與,構建科技服務領域本體庫[3]。
在構建本體庫時,首先根據詞、文檔之間的關系、分類,由科技服務領域專家參與構造抽象的科技服務本體結構;然后由計算機研發人員完成本體語義化標注,對于本體結構中包括推理規則和約束規則等概念模型應用owl存儲,實體模型以XML、RDF、RDFS[4]存儲,分別存儲到相應的資源描述數據庫中,構建倒排序索引,形成具有語義信息的本體庫,提供相應的接口方便資源的添加、刪除管理。
(2)智能搜索。
系統自動獲取用戶的查詢請求,提供傳統的關鍵詞搜索、本體語義搜索兩種方法把用戶查詢請求轉換成特定的格式,從資源數據庫、本體庫中檢索出符合查詢條件的數據集合,根據用戶權限控制按照查詢結果與查詢請求相關度輸出查詢結果。
3 示范平臺效果
江門高新區科技服務集成示范平臺開發完成后,針對江門高新區產業集群轉型發展的服務需求,以服務目錄為特色有效整合40多家江門高新區本地科技服務資源和全國優勢科技服務資源,匯聚形成260余項科技服務產品,促進了科技服務規范化、模塊化和標準化,并依據科技服務產品標準化程度,開始探索以集成化總包、專業化分包、本地化推廣為主要特征的線上供需對接、服務定制、服務集成,線下服務實施的集成服務模式,為企業提供集科技研發、科技成果轉化、創新創業服務、科技金融服務、科技咨詢等一體化的科技集成服務,提升了企業協同創新能力,有效帶動產業集群的轉型升級,促進江門高新區科技服務業的發展。
參考文獻
[1] 夏訓嘉,廖馨.企業知識管理與技術創新問題研究[J].經濟縱橫,2011(8).
[2] 沈惠敏,柯青.知識管理技術與協同技術的融合[J].科技進步與對策,2013(1).
命題邏輯的推理規則范文3
[關鍵詞] 人工智能,常識推理,歸納邏輯,廣義內涵邏輯,認知邏輯,自然語言邏輯
現代邏輯創始于19世紀末葉和20世紀早期,其發展動力主要來自于數學中的公理化運動。當時的數學家們試圖即從少數公理根據明確給出的演繹規則推導出其他的數學定理,從而把整個數學構造成為一個嚴格的演繹大廈,然后用某種程序和方法一勞永逸地證明數學體系的可靠性。為此需要發明和鍛造嚴格、精確、適用的邏輯工具。這是現代邏輯誕生的主要動力。由此造成的后果就是20世紀邏輯研究的嚴重數學化,其表現在于:一是邏輯專注于在數學的形式化過程中提出的問題;二是邏輯采納了數學的方法論,從事邏輯研究就意味著象數學那樣用嚴格的形式證明去解決問題。由此發展出來的邏輯被恰當地稱為“數理邏輯”,它增強了邏輯研究的深度,使邏輯學的發展繼古希臘邏輯、歐洲中世紀邏輯之后進入第三個高峰期,并且對整個現代科學特別是數學、哲學、語言學和計算機科學產生了非常重要的影響。
本文所要探討的問題是:21世紀邏輯發展的主要動力將來自何處?大致說來將如何發展?我個人的看法是:計算機科學和人工智能將至少是21世紀早期邏輯學發展的主要動力源泉,并將由此決定21世紀邏輯學的另一幅面貌。由于人工智能要模擬人的智能,它的難點不在于人腦所進行的各種必然性推理(這一點在20世紀基本上已經做到了,如用計算機去進行高難度和高強度的數學證明,“深藍”通過高速、大量的計算去與世界冠軍下棋),而是最能體現人的智能特征的能動性、創造性思維,這種思維活動中包括學習、抉擇、嘗試、修正、推理諸因素,例如選擇性地搜集相關的經驗證據,在不充分信息的基礎上作出嘗試性的判斷或抉擇,不斷根據環境反饋調整、修正自己的行為,……由此達到實踐的成功。于是,邏輯學將不得不比較全面地研究人的思維活動,并著重研究人的思維中最能體現其能動性特征的各種不確定性推理,由此發展出的邏輯理論也將具有更強的可應用性。
實際上,在20世紀中后期,就已經開始了現代邏輯與人工智能(記為AI)之間的相互融合和滲透。例如,哲學邏輯所研究的許多課題在理論計算機和人工智能中具有重要的應用價值。AI從認知心理學、社會科學以及決策科學中獲得了許多資源,但邏輯(包括哲學邏輯)在AI中發揮了特別突出的作用。某些原因促使哲學邏輯家去發展關于非數學推理
的理論;基于幾乎同樣的理由,AI研究者也在進行類似的探索,這兩方面的研究正在相互接近、相互借鑒,甚至在逐漸融合在一起。例如,AI特別關心下述課題:
·效率和資源有限的推理;
·感知;
·做計劃和計劃再認;
·關于他人的知識和信念的推理;
·各認知主體之間相互的知識;
·自然語言理解;
·知識表示;
·常識的精確處理;
·對不確定性的處理,容錯推理;
·關于時間和因果性的推理;
·解釋或說明;
·對歸納概括以及概念的學習。[①]
21世紀的邏輯學也應該關注這些問題,并對之進行研究。為了做到這一點,邏輯學家們有必要熟悉AI的要求及其相關進展,使其研究成果在AI中具有可應用性。
我認為,至少是21世紀早期,邏輯學將會重點關注下述幾個領域,并且有可能在這些領域出現具有重大意義的成果:(1)如何在邏輯中處理常識推理中的弗協調、非單調和容錯性因素?(2)如何使機器人具有人的創造性智能,如從經驗證據中建立用于指導以后行動的歸納判斷?(3)如何進行知識表示和知識推理,特別是基于已有的知識庫以及各認知主體相互之間的知識而進行的推理?(4)如何結合各種語境因素進行自然語言理解和推理,使智能機器人能夠用人的自然語言與人進行成功的交際?等等。
1.常識推理中的某些弗協調、非單調和容錯性因素
AI研究的一個目標就是用機器智能模擬人的智能,它選擇各種能反映人的智能特征的問題進行實踐,希望能做出各種具有智能特征的軟件系統。AI研究基于計算途徑,因此要建立具有可操作性的符號模型。一般而言,AI關于智能系統的符號模型可描述為:由一個知識載體(稱為知識庫KB)和一組加載在KB上的足以產生智能行為的過程(稱為問題求解器PS)構成。經過20世紀70年代包括專家系統的發展,AI研究者逐步取得共識,認識到知識在智能系統中力量,即一般的智能系統事實上是一種基于知識的系統,而知識包括專門性知識和常識性知識,前者亦可看做是某一領域內專家的常識。于是,常識問題就成為AI研究的一個核心問題,它包括兩個方面:常識表示和常識推理,即如何在人工智能中清晰地表示人類的常識,并運用這些常識去進行符合人類行為的推理。顯然,如此建立的常識知識庫可能包含矛盾,是不協調的,但這種矛盾或不協調應不至于影響到進行合理的推理行為;常識推理還是一種非單調推理,即人們基于不完全的信息推出某些結論,當人們得到更完全的信息后,可以改變甚至收回原來的結論;常識推理也是一種可能出錯的不精確的推理模式,是在容許有錯誤知識的情況下進行的推理,簡稱容錯推理。而經典邏輯拒斥任何矛盾,容許從矛盾推出一切命題;并且它是單調的,即承認如下的推理模式:如果p?r,則pùq?r;或者說,任一理論的定理屬于該理論之任一擴張的定理集。因此,在處理常識表示和常識推理時,經典邏輯應該受到限制和修正,并發展出某些非經典的邏輯,如次協調邏輯、非單調邏輯、容錯推理等。有人指出,常識推理的邏輯是次協調邏輯和非單調邏輯的某種結合物,而后者又可看做是對容錯推理的簡單且基本的情形的一種形式化。[②]
“次協調邏輯”(Paraconsistent Logic)是由普里斯特、達·科斯塔等人在對悖論的研究中發展出來的,其基本想法是:當在一個理論中發現難以克服的矛盾或悖論時,與其徒勞地想盡各種辦法去排除
或防范它們,不如干脆讓它們留在理論體系內,但把它們“圈禁”起來,不讓它們任意擴散,以免使我們所創立或研究的理論成為“不足道”的。于是,在次協調邏輯中,能夠容納有意義、有價值的“真矛盾”,但這些矛盾并不能使系統推出一切,導致自毀。因此,這一新邏輯具有一種次于經典邏輯但又遠遠高于完全不協調系統的協調性。次協調邏輯家們認為,如果在一理論T中,一語句A及其否定?A都是定理,則T是不協調的;否則,稱T是協調的。如果T所使用的邏輯含有從互相否定的兩公式可推出一切公式的規則或推理,則不協調的T也是不足道的(trivial)。因此,通常以經典邏輯為基礎的理論,如果它是不協調的,那它一定也是不足道的。這一現象表明,經典邏輯雖可用于研究協調的理論,但不適用于研究不協調但又足道的理論。達·科斯塔在20世紀60年代構造了一系列次協調邏輯系統Cn(1≤n≤w),以用作不協調而又足道的理論的邏輯工具。對次協調邏輯系統Cn的特征性描述包括下述命題:(i)矛盾律?(Aù?A)不普遍有效;(ii)從兩個相互否定的公式A和?A推不出任意公式;即是說,矛盾不會在系統中任意擴散,矛盾不等于災難。(iii)應當容納與(i)和(ii)相容的大多數經典邏輯的推理模式和規則。這里,(i)和(ii)表明了對矛盾的一種相對寬容的態度,(iii)則表明次協調邏輯對于經典邏輯仍有一定的繼承性。
在任一次協調邏輯系統Cn(1≤n≤w)中,下述經典邏輯的定理或推理模式都不成立:
?(Aù?A)
Aù?AB
A(?AB)
(A??A)B
(A??A)?B
A??A
(?Aù(AúB))B
(AB)(?B?A)
若以C0為經典邏輯,則系列C0, C1, C2,… Cn,… Cw使得對任正整數i有Ci弱于Ci-1,Cw是這系列中最弱的演算。已經為Cn設計出了合適的語義學,并已經證明Cn相對于此種語義是可靠的和完全的,并且次協調命題邏輯系統Cn還是可判定的?,F在,已經有人把次協調邏輯擴展到模態邏輯、時態邏輯、道義邏輯、多值邏輯、集合論等領域的研究中,發展了這些領域內的次協調理論。顯然,次協調邏輯將會得到更進一步的發展。[③]
非單調邏輯是關于非單調推理的邏輯,它的研究開始于20世紀80年代。1980年,D·麥克多莫特和J·多伊爾初步嘗試著系統發展一種關于非單調推理的邏輯。他們在經典謂詞演算中引入一個算子M,表示某種“一致性”斷言,并將其看做是模態概念,通過一定程序把模態邏輯系統T、S4和S5翻譯成非單調邏輯。B·摩爾的論文《非單調邏輯的語義思考》(1983)據認為在非單調邏輯方面作出了令人注目的貢獻。他在“缺省推理”和“自動認知推理”之間做了區分,并把前者看作是在沒有任何相反信息和缺少證據的條件下進行推理的過程,這種推理的特征是試探性的:根據新信息,它們很可能會被撤消。自動認知推理則不是這種類型,它是與人們自身的信念或知識相關的推理,可用它模擬一個理想的具有信念的有理性的人的推理。對于在計算機和人工智能中獲得成功的應用而言,非單調邏輯尚需進一步發展。
2.歸納以及其他不確定性推理
人類智能的本質特征和最高表現是創造。在人類創造的過程中,具有必然性的演繹推理固然起重要作用,但更為重要的是具有某種不確定性的歸納、類比推理以及模糊推理等。因此,計算機要成功地模擬人的智能,真正體現出人的智能品質,就必須對各種具有不確定性的推理模式進行研究。
首先是對歸納推理和歸納邏輯的研究。這里所說的“歸納推理”是廣義的,指一切擴展性推理,它們的結論所斷定的超出了其前提所斷定的范圍,因而前提的真無法保證結論的真,整個推理因此缺乏必然性。具體說來,這種意義的“歸納”包括下述內容:簡單枚舉法;排除歸納法,指這樣一些操作:預先通過觀察或實驗列出被研究現象的可能的原因,然后有選擇地安排某些事例或實驗,根據某些標準排除不相干假設,最后得到比較可靠的結論;統計概括:從關于有窮數目樣本的構成的知識到關于未知總體分布構成的結論的推理;類比論證和假說演繹法,等等。盡管休謨提出著名的“歸納問題”,對歸納推理的合理性和歸納邏輯的可能性提出了深刻的質疑,但我認為,(1)歸納是在茫茫宇宙中生存的人類必須采取也只能采取的認知策略,對于人類來說具有實踐的必然性。(2)人類有理由從經驗的重復中建立某種確實性和規律性,其依據就是確信宇宙中存在某種類似于自然齊一律和客觀因果律之類的東西。這一確信是合理的,而用純邏輯的理由去懷疑一個關于世界的事實性斷言則是不合理的,除非這個斷言是邏輯矛盾。(3)人類有可能建立起局部合理的歸納邏輯和歸納方法論。并且,歸納邏輯的這種可能性正在計算機科學和人工智能的研究推動下慢慢地演變成現實。恩格斯早就指出,“社會一旦有技術上的需要,則這種需要比十所大學更能把科學推向前進?!盵④] 有人通過指責現有的歸納邏輯不成熟,得出“歸納邏輯不可能”的結論,他們的推理本身與歸納推理一樣,不具有演繹的必然性。(4)人類實踐的成功在一定程度上證明了相應的經驗知識的真理性,也就在一定程度上證明了歸納邏輯和歸納方法論的力量。毋庸否認,歸納邏輯目前還很不成熟。有的學者指出,為了在機器的智能模擬中克服對歸納模擬的困難而有所突破,應該將歸納邏輯等有關的基礎理論研究與機器學習、不確定推理和神經網絡學習模型與歸納學習中已有的成果結合起來。只有這樣,才能在已有的歸納學習成果上,在機器歸納和機器發現上取得新的突破和進展。[⑤] 這是一個極有價值且極富挑戰性的課題,無疑在21世紀將得到重視并取得進展。
再談模糊邏輯。現實世界中充滿了模糊現象,這些現象反映到人的思維中形成了模糊概念和模糊命題,如“矮個子”、“美人”、“甲地在乙地附近”、“他很年輕”等。研究模糊概念、模糊命題和模糊推理的邏輯理論叫做“模糊邏輯”。對它的研究始于20世紀20年代,其代表性人物是L·A·查德和P·N·馬林諾斯。模糊邏輯為精確邏輯(二值邏輯)解決不了的問題提供了解決的可能,它目前在醫療診斷、故障檢測、氣象預報、自動控制以及人工智能研究中獲得重要應用。顯然,它在21世紀將繼續得到更大的發展。
3.廣義內涵邏輯
經典邏輯只是對命題聯結詞、個體詞、謂詞、量詞和等詞進行了研究,但在自然語言中,除了這些語言成分之外,顯然還存在許多其他的語言成分,如各種各樣的副詞,包括模態詞“必然”、“可能”和“不可能”
、時態詞“過去”、“現在”和“未來”、道義詞“應該”、“允許”、“禁止”等等,以及各種認知動詞,如“思考”、“希望”、“相信”、“判斷”、“猜測”、“考慮”、“懷疑”,這些認知動詞在邏輯和哲學文獻中被叫做“命題態度詞”。對這些副詞以及命題態度詞的邏輯研究可以歸類為“廣義內涵邏輯”。
大多數副詞以及幾乎所有命題態度詞都是內涵性的,造成內涵語境,后者與外延語境構成對照。外延語境又叫透明語境,是經典邏輯的組合性原則、等值置換規則、同一性替換規則在其中適用的語境;內涵語境又稱晦暗語境,是上述規則在其中不適用的語境。相應于外延語境和內涵語境的區別,一切語言表達式(包括自然語言的名詞、動詞、形容詞直至語句)都可以區分為外延性的和內涵性的,前者是提供外延語境的表達式,后者是提供內涵性語境的表達式。例如,殺死、見到、擁抱、吻、砍、踢、打、與…下棋等都是外延性表達式,而知道、相信、認識、必然、可能、允許、禁止、過去、現在、未來等都是內涵性表達式。
在內涵語境中會出現一些復雜的情況。首先,對于個體詞項來說,關鍵性的東西是我們不僅必須考慮它們在現實世界中的外延,而且要考慮它們在其他可能世界中的外延。例如,由于“必然”是內涵性表達式,它提供內涵語境,因而下述推理是非有效的:
晨星必然是晨星,
晨星就是暮星,
所以,晨星必然是暮星。
這是因為:這個推理只考慮到“晨星”和“暮星”在現實世界中的外延,并沒有考慮到它們在每一個可能世界中的外延,我們完全可以設想一個可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我們就不能利用同一性替換規則,由該推理的前提得出它的結論:“晨星必然是暮星”。其次,在內涵語境中,語言表達式不再以通常是它們的外延的東西作為外延,而以通常是它們的內涵的東西作為外延。以“達爾文相信人是從猿猴進化而來的”這個語句為例。這里,達爾文所相信的是“人是從猿猴進化而來的”所表達的思想,而不是它所指稱的真值,于是在這種情況下,“人是從猿猴進化而來的”所表達的思想(命題)就構成它的外延。再次,在內涵語境中,雖然適用于外延的函項性原則不再成立,但并不是非要拋棄不可,可以把它改述為新的形式:一復合表達式的外延是它出現于外延語境中的部分表達式的外延加上出現于內涵語境中的部分表達式的內涵的函項。這個新的組合性或函項性原則在內涵邏輯中成立。
一般而言,一個好的內涵邏輯至少應滿足兩個條件:(i)它必須能夠處理外延邏輯所能處理的問題;(ii)它還必須能夠處理外延邏輯所不能處理的難題。這就是說,它既不能與外延邏輯相矛盾,又要克服外延邏輯的局限。這樣的內涵邏輯目前正在發展中,并且已有初步輪廓。從術語上說,內涵邏輯除需要真、假、語句真值的同一和不同、集合或類、謂詞的同范圍或不同范圍等外延邏輯的術語之外,還需要同義、內涵的同一和差異、命題、屬性或概念這樣一些術語。廣而言之,可以把內涵邏輯看作是關于象“必然”、“可能”、“知道”、“相信”,“允許”、“禁止”等提供內涵語境的語句算子的一般邏輯。在這種廣義之下,模態邏輯、時態邏輯、道義邏輯、認知邏輯、問題邏輯等都是內涵邏輯。不過,還有一種狹義的內涵邏輯,它可以粗略定義如下:一個內涵邏輯是一個形式語言,其中包括(1)謂詞邏輯的算子、量詞和變元,這里的謂詞邏輯不必局限于一階謂詞邏輯,也可以是高階謂詞邏輯;(2)合式的λ—表達式,例如(λx)A,這里A是任一類型的表達式,x是任一類型的變元,(λx)A本身是一函項,它把變元x在其中取值的那種類型的對象映射到A所屬的那種類型上;(3)其他需要的模態的或內涵的算子,例如€,ù、ú。而一個內涵邏輯的解釋,則由下列要素組成:(1)一個可能世界的非空集W;(2)一個可能個體的非空集D;(3)一個賦值,它給系統內的表達式指派它們在每w∈W中的外延。對于任一的解釋Q和任一的世界w∈W,判定內涵邏輯系統中的任一表達式X相對于解釋Q在w∈W中的外延總是可能的。這樣的內涵邏輯系統有丘奇的LSD系統,R·蒙塔古的IL系統,以及E·N·扎爾塔的FIL系統等。[⑥]
在各種內涵邏輯中,認識論邏輯(epistemic logic)具有重要意義。它有廣義和狹義之分。廣義的認識論邏輯研究與感知(perception)、知道、相信、斷定、理解、懷疑、問題和回答等相關的邏輯問題,包括問題邏輯、知道邏輯、相信邏輯、斷定邏輯等;狹義的認識論邏輯僅指知道和相信的邏輯,簡稱“認知邏輯”。馮·賴特在1951年提出了對“認知模態”的邏輯分析,這對建立認知邏輯具有極大的啟發作用。J·麥金西首先給出了一個關于“知道”的模態邏輯。A·帕普于1957年建立了一個基于6條規則的相信邏輯系統。J·亨迪卡于60年代出版的《知識和信念》一書是認知邏輯史上的重要著作,其中提出了一些認知邏輯的系統,并為其建立了基于“模型集”的語義學,后者是可能世界語義學的先導之一。當今的認知邏輯紛繁復雜,既不成熟也面臨許多難題。由于認知邏輯涉及認識論、心理學、語言學、計算機科學和人工智能等諸多領域,并且認知邏輯的應用技術,又稱關于知識的推理技術,正在成為計算機科學和人工智能的重要分支之一,因此認知邏輯在20世紀中后期成為國際邏輯學界的一個熱門研究方向。這一狀況在21世紀將得到繼續并進一步強化,在這方面有可能出現突破性的重要結果。
4.對自然語言的邏輯研究
對自然語言的邏輯研究有來自幾個不同領域的推動力。首先是計算機和人工智能的研究,人機對話和通訊、計算機的自然語言理解、知識表示和知識推理等課題,都需要對自然語言進行精細的邏輯分析,并且這種分析不能僅停留在句法層面,而且要深入到語義層面。其次是哲學特別是語言哲學,在20世紀哲學家們對語言表達式的意義問題傾注了異乎尋常的精力,發展了各種各樣的意義理論,如觀念論、指稱論、使用論、言語行為理論、真值條件論等等,以致有人說,關注意義成了20世紀哲學家的職業病。再次是語言學自身發展的需要,例如在研究自然語言的意義問題時,不能僅僅停留在脫離語境的抽象研究上面,而要結合使用語言的特定環境去研究,這導致了語義學、語用學、新修辭學等等發展。各個方面發展的成果可以總稱為“自然語言邏輯”,它力圖綜合后期維特根斯坦提倡的使用論
,J·L·奧斯汀、J·L·塞爾等人發展的言語行為理論,以及P·格賴斯所創立的會話含義學說等成果,透過自然語言的指謂性和交際性去研究自然語言中的推理。
自然語言具有表達和交際兩種職能,其中交際職能是自然語言最重要的職能,是它的生命力之所在。而言語交際總是在一定的語言環境(簡稱語境)中進行的,語境有廣義和狹義之分。狹義的語境僅指一個語詞、一個句子出現的上下文。廣義的語境除了上下文之外,還包括該語詞或語句出現的整個社會歷史條件,如該語詞或語句出現的時間、地點、條件、講話的人(作者)、聽話的人(讀者)以及交際雙方所共同具有的背景知識,這里的背景知識包括交際雙方共同的信念和心理習慣,以及共同的知識和假定等等。這些語境因素對于自然語言的表達式(語詞、語句)的意義有著極其重要的影響,這具體表現在:(i)語境具有消除自然語言語詞的多義性、歧義性和模糊性的能力,具有嚴格規定語言表達式意義的能力。(ii)自然語言的句子常常包含指示代詞、人稱代詞、時間副詞等,要弄清楚這些句子的意義和內容,就要弄清楚這句話是誰說的、對誰說的、什么時候說的、什么地點說的、針對什么說的,等等,這只有在一定的語境中才能進行。依賴語境的其他類型的語句還有:包含著象“有些”和“每一個”這類量化表達式的句子的意義取決于依語境而定的論域,包含著象“大的”、“冷的”這類形容詞的句子的意義取決于依語境而定的相比較的對象類;模態語句和條件語句的意義取決于因語境而變化的語義決定因素,如此等等。(iii)語言表達式的意義在語境中會出現一些重要的變化,以至偏離它通常所具有的意義(抽象意義),而產生一種新的意義即語用涵義。有人認為,一個語言表達式在它的具體語境中的意義,才是它的完全的真正的意義,一旦脫離開語境,它就只具有抽象的意義。語言的抽象意義和它的具體意義的關系,正象解剖了的死人肢體與活人肢體的關系一樣。邏輯應該去研究、理解、把握自然語言的具體意義,當然不是去研究某一個(或一組)特定的語句在某個特定語境中唯一無二的意義,而是專門研究確定自然語言具體意義的普遍原則。[⑦]
美國語言學家保羅·格賴斯把語言表達式在一定的交際語境中產生的一種不同于字面意義的特殊涵義,叫做“語用涵義”、“會話涵義”或“隱涵”(implicature),并于1975年提出了一組“交際合作原則”,包括一個總則和四組準則??倓t的內容是:在你參與會話時,你要依據你所參與的談話交流的公認目的或方向,使你的會話貢獻符合這種需要。仿照康德把范疇區分為量、質、關系和方式四類,格賴斯提出了如下四組準則:
(1)數量準則:在交際過程中給出的信息量要適中。
a.給出所要求的信息量;
b.給出的信息量不要多于所要求的信息量。
(2)質量準則:力求講真話。
a.不說你認為假的東西,。
b.不說你缺少適當證據的東西。
(3)關聯準則:說話要與已定的交際目的相關聯。
(4)方式準則:說話要意思明確,表達清晰。
a.避免晦澀生僻的表達方式;
b.避免有歧義的表達方式;
c.說話要簡潔;
d.說話要有順序性。[⑧]
后來對這些原則提出了不少修正和補充,例如有人還提出了交際過程中所要遵守的“禮貌原則”。只要把交際雙方遵守交際合作原則之類的語用規則作為基本前提,這些原則就可以用來確定和把握自然語言的具體意義(語用涵義)。實際上,一個語句p的語用涵義,就是聽話人在具體語境中根據語用規則由p得到的那個或那些語句。更具體地說,從說話人S說的話語p推出語用涵義q的一般過程是:
(i)S說了p;
(ii)沒有理由認為S不遵守準則,或至少S會遵守總的合作原則;
(iii)S說了p而又要遵守準則或總的合作原則,S必定想表達q;
(iv)S必然知道,談話雙方都清楚:如果S是合作的,必須假設q;
(v)S無法阻止聽話人H考慮q;
(vi)因此,S意圖讓H考慮q,并在說p時意味著q。
試舉二例:
(1)a站在熄火的汽車旁,b向a走來。a說:“我沒有汽油了?!眀說:“前面拐角處有一個修車鋪?!边@里a與b談話的目的是:a想得到汽油。根據關系準則,b說這句話是與a想得到汽油相關的,由此可知:b說這句話時隱涵著:“前面的修車鋪還在營業并且賣汽油?!?/p>
命題邏輯的推理規則范文4
AI研究的一個目標就是用機器智能模擬人的智能,它選擇各種能反映人的智能特征的問題進行實踐,希望能做出各種具有智能特征的軟件系統。AI研究基于計算途徑,因此要建立具有可操作性的符號模型。一般而言,AI關于智能系統的符號模型可描述為:由一個知識載體(稱為知識庫KB)和一組加載在KB上的足以產生智能行為的過程(稱為問題求解器PS)構成。經過20世紀70年代包括專家系統的發展,AI研究者逐步取得共識,認識到知識在智能系統中力量,即一般的智能系統事實上是一種基于知識的系統,而知識包括專門性知識和常識性知識,前者亦可看做是某一領域內專家的常識。于是,常識問題就成為AI研究的一個核心問題,它包括兩個方面:常識表示和常識推理,即如何在人工智能中清晰地表示人類的常識,并運用這些常識去進行符合人類行為的推理。顯然,如此建立的常識知識庫可能包含矛盾,是不協調的,但這種矛盾或不協調應不至于影響到進行合理的推理行為;常識推理還是一種非單調推理,即人們基于不完全的信息推出某些結論,當人們得到更完全的信息后,可以改變甚至收回原來的結論;常識推理也是一種可能出錯的不精確的推理模式,是在容許有錯誤知識的情況下進行的推理,簡稱容錯推理。而經典邏輯拒斥任何矛盾,容許從矛盾推出一切命題;并且它是單調的,即承認如下的推理模式:如果p?r,則pùq?r;或者說,任一理論的定理屬于該理論之任一擴張的定理集。因此,在處理常識表示和常識推理時,經典邏輯應該受到限制和修正,并發展出某些非經典的邏輯,如次協調邏輯、非單調邏輯、容錯推理等。有人指出,常識推理的邏輯是次協調邏輯和非單調邏輯的某種結合物,而后者又可看做是對容錯推理的簡單且基本的情形的一種形式化。[②]“次協調邏輯”(ParaconsistentLogic)是由普里斯特、達·科斯塔等人在對悖論的研究中發展出來的,其基本想法是:當在一個理論中發現難以克服的矛盾或悖論時,與其徒勞地想盡各種辦法去排除或防范它們,不如干脆讓它們留在理論體系內,但把它們“圈禁”起來,不讓它們任意擴散,以免使我們所創立或研究的理論成為“不足道”的。于是,在次協調邏輯中,能夠容納有意義、有價值的“真矛盾”,但這些矛盾并不能使系統推出一切,導致自毀。因此,這一新邏輯具有一種次于經典邏輯但又遠遠高于完全不協調系統的協調性。次協調邏輯家們認為,如果在一理論T中,一語句A及其否定?A都是定理,則T是不協調的;否則,稱T是協調的。如果T所使用的邏輯含有從互相否定的兩公式可推出一切公式的規則或推理,則不協調的T也是不足道的(trivial)。因此,通常以經典邏輯為基礎的理論,如果它是不協調的,那它一定也是不足道的。這一現象表明,經典邏輯雖可用于研究協調的理論,但不適用于研究不協調但又足道的理論。達·科斯塔在20世紀60年代構造了一系列次協調邏輯系統Cn(1≤n≤w),以用作不協調而又足道的理論的邏輯工具。對次協調邏輯系統Cn的特征性描述包括下述命題:(i)矛盾律?(Aù?A)不普遍有效;(ii)從兩個相互否定的公式A和?A推不出任意公式;即是說,矛盾不會在系統中任意擴散,矛盾不等于災難。(iii)應當容納與(i)和(ii)相容的大多數經典邏輯的推理模式和規則。這里,(i)和(ii)表明了對矛盾的一種相對寬容的態度,(iii)則表明次協調邏輯對于經典邏輯仍有一定的繼承性。
在任一次協調邏輯系統Cn(1≤n≤w)中,下述經典邏輯的定理或推理模式都不成立:
?(Aù?A)
Aù?AB
A(?AB)
(A??A)B
(A??A)?B
A??A
(?Aù(AúB))B
(AB)(?B?A)
若以C0為經典邏輯,則系列C0,C1,C2,…Cn,…Cw使得對任正整數i有Ci弱于Ci-1,Cw是這系列中最弱的演算。已經為Cn設計出了合適的語義學,并已經證明Cn相對于此種語義是可靠的和完全的,并且次協調命題邏輯系統Cn還是可判定的?,F在,已經有人把次協調邏輯擴展到模態邏輯、時態邏輯、道義邏輯、多值邏輯、集合論等領域的研究中,發展了這些領域內的次協調理論。顯然,次協調邏輯將會得到更進一步的發展。[③]
非單調邏輯是關于非單調推理的邏輯,它的研究開始于20世紀80年代。1980年,D·麥克多莫特和J·多伊爾初步嘗試著系統發展一種關于非單調推理的邏輯。他們在經典謂詞演算中引入一個算子M,表示某種“一致性”斷言,并將其看做是模態概念,通過一定程序把模態邏輯系統T、S4和S5翻譯成非單調邏輯。B·摩爾的論文《非單調邏輯的語義思考》(1983)據認為在非單調邏輯方面作出了令人注目的貢獻。他在“缺省推理”和“自動認知推理”之間做了區分,并把前者看作是在沒有任何相反信息和缺少證據的條件下進行推理的過程,這種推理的特征是試探性的:根據新信息,它們很可能會被撤消。自動認知推理則不是這種類型,它是與人們自身的信念或知識相關的推理,可用它模擬一個理想的具有信念的有理性的人的推理。對于在計算機和人工智能中獲得成功的應用而言,非單調邏輯尚需進一步發展。
[摘要]本文認為,計算機科學和人工智能將是21世紀邏輯學發展的主要動力源泉,并且在很大程度上將決定21世紀邏輯學的面貌。至少在21世紀早期,邏輯學將重點關注下列論題:(1)如何在邏輯中處理常識推理的弗協調、非單調和容錯性因素?(2)如何使機器人具有人的創造性智能,如從經驗證據中建立用于指導以后行動的可錯的歸納判斷?(3)如何進行知識表示和知識推理,特別是基于已有的知識庫以及各認知主體相互之間的知識而進行的推理?(4)如何結合各種語境因素進行自然語言理解和推理,使智能機器人能夠用人的自然語言與人進行成功的交際?等等。
[關鍵詞]人工智能,常識推理,歸納邏輯,廣義內涵邏輯,認知邏輯,自然語言邏輯
人類智能的本質特征和最高表現是創造。在人類創造的過程中,具有必然性的演繹推理固然起重要作用,但更為重要的是具有某種不確定性的歸納、類比推理以及模糊推理等。因此,計算機要成功地模擬人的智能,真正體現出人的智能品質,就必須對各種具有不確定性的推理模式進行研究。
首先是對歸納推理和歸納邏輯的研究。這里所說的“歸納推理”是廣義的,指一切擴展性推理,它們的結論所斷定的超出了其前提所斷定的范圍,因而前提的真無法保證結論的真,整個推理因此缺乏必然性。具體說來,這種意義的“歸納”包括下述內容:簡單枚舉法;排除歸納法,指這樣一些操作:預先通過觀察或實驗列出被研究現象的可能的原因,然后有選擇地安排某些事例或實驗,根據某些標準排除不相干假設,最后得到比較可靠的結論;統計概括:從關于有窮數目樣本的構成的知識到關于未知總體分布構成的結論的推理;類比論證和假說演繹法,等等。盡管休謨提出著名的“歸納問題”,對歸納推理的合理性和歸納邏輯的可能性提出了深刻的質疑,但我認為,(1)歸納是在茫茫宇宙中生存的人類必須采取也只能采取的認知策略,對于人類來說具有實踐的必然性。(2)人類有理由從經驗的重復中建立某種確實性和規律性,其依據就是確信宇宙中存在某種類似于自然齊一律和客觀因果律之類的東西。這一確信是合理的,而用純邏輯的理由去懷疑一個關于世界的事實性斷言則是不合理的,除非這個斷言是邏輯矛盾。(3)人類有可能建立起局部合理的歸納邏輯和歸納方法論。并且,歸納邏輯的這種可能性正在計算機科學和人工智能的研究推動下慢慢地演變成現實。恩格斯早就指出,“社會一旦有技術上的需要,則這種需要比十所大學更能把科學推向前進?!盵④]有人通過指責現有的歸納邏輯不成熟,得出“歸納邏輯不可能”的結論,他們的推理本身與歸納推理一樣,不具有演繹的必然性。(4)人類實踐的成功在一定程度上證明了相應的經驗知識的真理性,也就在一定程度上證明了歸納邏輯和歸納方法論的力量。毋庸否認,歸納邏輯目前還很不成熟。有的學者指出,為了在機器的智能模擬中克服對歸納模擬的困難而有所突破,應該將歸納邏輯等有關的基礎理論研究與機器學習、不確定推理和神經網絡學習模型與歸納學習中已有的成果結合起來。只有這樣,才能在已有的歸納學習成果上,在機器歸納和機器發現上取得新的突破和進展。[⑤]這是一個極有價值且極富挑戰性的課題,無疑在21世紀將得到重視并取得進展。
再談模糊邏輯?,F實世界中充滿了模糊現象,這些現象反映到人的思維中形成了模糊概念和模糊命題,如“矮個子”、“美人”、“甲地在乙地附近”、“他很年輕”等。研究模糊概念、模糊命題和模糊推理的邏輯理論叫做“模糊邏輯”。對它的研究始于20世紀20年代,其代表性人物是L·A·查德和P·N·馬林諾斯。模糊邏輯為精確邏輯(二值邏輯)解決不了的問題提供了解決的可能,它目前在醫療診斷、故障檢測、氣象預報、自動控制以及人工智能研究中獲得重要應用。顯然,它在21世紀將繼續得到更大的發展。
3.廣義內涵邏輯
經典邏輯只是對命題聯結詞、個體詞、謂詞、量詞和等詞進行了研究,但在自然語言中,除了這些語言成分之外,顯然還存在許多其他的語言成分,如各種各樣的副詞,包括模態詞“必然”、“可能”和“不可能”、時態詞“過去”、“現在”和“未來”、道義詞“應該”、“允許”、“禁止”等等,以及各種認知動詞,如“思考”、“希望”、“相信”、“判斷”、“猜測”、“考慮”、“懷疑”,這些認知動詞在邏輯和哲學文獻中被叫做“命題態度詞”。對這些副詞以及命題態度詞的邏輯研究可以歸類為“廣義內涵邏輯”。
大多數副詞以及幾乎所有命題態度詞都是內涵性的,造成內涵語境,后者與外延語境構成對照。外延語境又叫透明語境,是經典邏輯的組合性原則、等值置換規則、同一性替換規則在其中適用的語境;內涵語境又稱晦暗語境,是上述規則在其中不適用的語境。相應于外延語境和內涵語境的區別,一切語言表達式(包括自然語言的名詞、動詞、形容詞直至語句)都可以區分為外延性的和內涵性的,前者是提供外延語境的表達式,后者是提供內涵性語境的表達式。例如,殺死、見到、擁抱、吻、砍、踢、打、與…下棋等都是外延性表達式,而知道、相信、認識、必然、可能、允許、禁止、過去、現在、未來等都是內涵性表達式。
在內涵語境中會出現一些復雜的情況。首先,對于個體詞項來說,關鍵性的東西是我們不僅必須考慮它們在現實世界中的外延,而且要考慮它們在其他可能世界中的外延。例如,由于“必然”是內涵性表達式,它提供內涵語境,因而下述推理是非有效的:
晨星必然是晨星,
晨星就是暮星,
所以,晨星必然是暮星。
這是因為:這個推理只考慮到“晨星”和“暮星”在現實世界中的外延,并沒有考慮到它們在每一個可能世界中的外延,我們完全可以設想一個可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我們就不能利用同一性替換規則,由該推理的前提得出它的結論:“晨星必然是暮星”。其次,在內涵語境中,語言表達式不再以通常是它們的外延的東西作為外延,而以通常是它們的內涵的東西作為外延。以“達爾文相信人是從猿猴進化而來的”這個語句為例。這里,達爾文所相信的是“人是從猿猴進化而來的”所表達的思想,而不是它所指稱的真值,于是在這種情況下,“人是從猿猴進化而來的”所表達的思想(命題)就構成它的外延。再次,在內涵語境中,雖然適用于外延的函項性原則不再成立,但并不是非要拋棄不可,可以把它改述為新的形式:一復合表達式的外延是它出現于外延語境中的部分表達式的外延加上出現于內涵語境中的部分表達式的內涵的函項。這個新的組合性或函項性原則在內涵邏輯中成立。
一般而言,一個好的內涵邏輯至少應滿足兩個條件:(i)它必須能夠處理外延邏輯所能處理的問題;(ii)它還必須能夠處理外延邏輯所不能處理的難題。這就是說,它既不能與外延邏輯相矛盾,又要克服外延邏輯的局限。這樣的內涵邏輯目前正在發展中,并且已有初步輪廓。從術語上說,內涵邏輯除需要真、假、語句真值的同一和不同、集合或類、謂詞的同范圍或不同范圍等外延邏輯的術語之外,還需要同義、內涵的同一和差異、命題、屬性或概念這樣一些術語。廣而言之,可以把內涵邏輯看作是關于象“必然”、“可能”、“知道”、“相信”,“允許”、“禁止”等提供內涵語境的語句算子的一般邏輯。在這種廣義之下,模態邏輯、時態邏輯、道義邏輯、認知邏輯、問題邏輯等都是內涵邏輯。不過,還有一種狹義的內涵邏輯,它可以粗略定義如下:一個內涵邏輯是一個形式語言,其中包括(1)謂詞邏輯的算子、量詞和變元,這里的謂詞邏輯不必局限于一階謂詞邏輯,也可以是高階謂詞邏輯;(2)合式的λ—表達式,例如(λx)A,這里A是任一類型的表達式,x是任一類型的變元,(λx)A本身是一函項,它把變元x在其中取值的那種類型的對象映射到A所屬的那種類型上;(3)其他需要的模態的或內涵的算子,例如€,ù、ú。而一個內涵邏輯的解釋,則由下列要素組成:(1)一個可能世界的非空集W;(2)一個可能個體的非空集D;(3)一個賦值,它給系統內的表達式指派它們在每w∈W中的外延。對于任一的解釋Q和任一的世界w∈W,判定內涵邏輯系統中的任一表達式X相對于解釋Q在w∈W中的外延總是可能的。這樣的內涵邏輯系統有丘奇的LSD系統,R·蒙塔古的IL系統,以及E·N·扎爾塔的FIL系統等。[⑥]在各種內涵邏輯中,認識論邏輯(epistemiclogic)具有重要意義。它有廣義和狹義之分。廣義的認識論邏輯研究與感知(perception)、知道、相信、斷定、理解、懷疑、問題和回答等相關的邏輯問題,包括問題邏輯、知道邏輯、相信邏輯、斷定邏輯等;狹義的認識論邏輯僅指知道和相信的邏輯,簡稱“認知邏輯”。馮·賴特在1951年提出了對“認知模態”的邏輯分析,這對建立認知邏輯具有極大的啟發作用。J·麥金西首先給出了一個關于“知道”的模態邏輯。A·帕普于1957年建立了一個基于6條規則的相信邏輯系統。J·亨迪卡于60年代出版的《知識和信念》一書是認知邏輯史上的重要著作,其中提出了一些認知邏輯的系統,并為其建立了基于“模型集”的語義學,后者是可能世界語義學的先導之一。當今的認知邏輯紛繁復雜,既不成熟也面臨許多難題。由于認知邏輯涉及認識論、心理學、語言學、計算機科學和人工智能等諸多領域,并且認知邏輯的應用技術,又稱關于知識的推理技術,正在成為計算機科學和人工智能的重要分支之一,因此認知邏輯在20世紀中后期成為國際邏輯學界的一個熱門研究方向。這一狀況在21世紀將得到繼續并進一步強化,在這方面有可能出現突破性的重要結果。
4.對自然語言的邏輯研究
對自然語言的邏輯研究有來自幾個不同領域的推動力。首先是計算機和人工智能的研究,人機對話和通訊、計算機的自然語言理解、知識表示和知識推理等課題,都需要對自然語言進行精細的邏輯分析,并且這種分析不能僅停留在句法層面,而且要深入到語義層面。其次是哲學特別是語言哲學,在20世紀哲學家們對語言表達式的意義問題傾注了異乎尋常的精力,發展了各種各樣的意義理論,如觀念論、指稱論、使用論、言語行為理論、真值條件論等等,以致有人說,關注意義成了20世紀哲學家的職業病。再次是語言學自身發展的需要,例如在研究自然語言的意義問題時,不能僅僅停留在脫離語境的抽象研究上面,而要結合使用語言的特定環境去研究,這導致了語義學、語用學、新修辭學等等發展。各個方面發展的成果可以總稱為“自然語言邏輯”,它力圖綜合后期維特根斯坦提倡的使用論,J·L·奧斯汀、J·L·塞爾等人發展的言語行為理論,以及P·格賴斯所創立的會話含義學說等成果,透過自然語言的指謂性和交際性去研究自然語言中的推理。
自然語言具有表達和交際兩種職能,其中交際職能是自然語言最重要的職能,是它的生命力之所在。而言語交際總是在一定的語言環境(簡稱語境)中進行的,語境有廣義和狹義之分。狹義的語境僅指一個語詞、一個句子出現的上下文。廣義的語境除了上下文之外,還包括該語詞或語句出現的整個社會歷史條件,如該語詞或語句出現的時間、地點、條件、講話的人(作者)、聽話的人(讀者)以及交際雙方所共同具有的背景知識,這里的背景知識包括交際雙方共同的信念和心理習慣,以及共同的知識和假定等等。這些語境因素對于自然語言的表達式(語詞、語句)的意義有著極其重要的影響,這具體表現在:(i)語境具有消除自然語言語詞的多義性、歧義性和模糊性的能力,具有嚴格規定語言表達式意義的能力。(ii)自然語言的句子常常包含指示代詞、人稱代詞、時間副詞等,要弄清楚這些句子的意義和內容,就要弄清楚這句話是誰說的、對誰說的、什么時候說的、什么地點說的、針對什么說的,等等,這只有在一定的語境中才能進行。依賴語境的其他類型的語句還有:包含著象“有些”和“每一個”這類量化表達式的句子的意義取決于依語境而定的論域,包含著象“大的”、“冷的”這類形容詞的句子的意義取決于依語境而定的相比較的對象類;模態語句和條件語句的意義取決于因語境而變化的語義決定因素,如此等等。(iii)語言表達式的意義在語境中會出現一些重要的變化,以至偏離它通常所具有的意義(抽象意義),而產生一種新的意義即語用涵義。有人認為,一個語言表達式在它的具體語境中的意義,才是它的完全的真正的意義,一旦脫離開語境,它就只具有抽象的意義。語言的抽象意義和它的具體意義的關系,正象解剖了的死人肢體與活人肢體的關系一樣。邏輯應該去研究、理解、把握自然語言的具體意義,當然不是去研究某一個(或一組)特定的語句在某個特定語境中唯一無二的意義,而是專門研究確定自然語言具體意義的普遍原則。[⑦]
美國語言學家保羅·格賴斯把語言表達式在一定的交際語境中產生的一種不同于字面意義的特殊涵義,叫做“語用涵義”、“會話涵義”或“隱涵”(implicature),并于1975年提出了一組“交際合作原則”,包括一個總則和四組準則??倓t的內容是:在你參與會話時,你要依據你所參與的談話交流的公認目的或方向,使你的會話貢獻符合這種需要。仿照康德把范疇區分為量、質、關系和方式四類,格賴斯提出了如下四組準則:
(1)數量準則:在交際過程中給出的信息量要適中。
a.給出所要求的信息量;
b.給出的信息量不要多于所要求的信息量。
(2)質量準則:力求講真話。
a.不說你認為假的東西,。
b.不說你缺少適當證據的東西。
(3)關聯準則:說話要與已定的交際目的相關聯。
(4)方式準則:說話要意思明確,表達清晰。
a.避免晦澀生僻的表達方式;
b.避免有歧義的表達方式;
c.說話要簡潔;
d.說話要有順序性。[⑧]
后來對這些原則提出了不和補充,例如有人還提出了交際過程中所要遵守的“禮貌原則”。只要把交際雙方遵守交際合作原則之類的語用規則作為基本前提,這些原則就可以用來確定和把握自然語言的具體意義(語用涵義)。實際上,一個語句p的語用涵義,就是聽話人在具體語境中根據語用規則由p得到的那個或那些語句。更具體地說,從說話人S說的話語p推出語用涵義q的一般過程是:
(i)S說了p;
(ii)沒有理由認為S不遵守準則,或至少S會遵守總的合作原則;
(iii)S說了p而又要遵守準則或總的合作原則,S必定想表達q;
(iv)S必然知道,談話雙方都清楚:如果S是合作的,必須假設q;
(v)S無法阻止聽話人H考慮q;
(vi)因此,S意圖讓H考慮q,并在說p時意味著q。
試舉二例:
(1)a站在熄火的汽車旁,b向a走來。a說:“我沒有汽油了?!眀說:“前面拐角處有一個修車鋪?!边@里a與b談話的目的是:a想得到汽油。根據關系準則,b說這句話是與a想得到汽油相關的,由此可知:b說這句話時隱涵著:“前面的修車鋪還在營業并且賣汽油?!?/p>