初中數學探索規律問題范例6篇

前言:中文期刊網精心挑選了初中數學探索規律問題范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。

初中數學探索規律問題

初中數學探索規律問題范文1

價值。

關鍵詞:初中數學;實踐性教學;創新教育;價值

初中數學實踐性教學是指在初中數學教學中老師為學生安排一個或若干個可供學生個人或群體參與的活動來引導學生體會現實生活中的數形關系,老師通過與學生交流并引導學生互相分享自己在教學中的收獲,組織學生共同探索數學規律和結論,并嘗試運用學到的數學知識解決實際問題。這種教育方式是對學生進行創新教育的有效途徑,可以有效培養學生的創新能力,使數學教學快速穩步發展。本文重點就初中數學實踐性教學中如何實現創新教育的價值進行了探討。

一、為初中數學實踐教學中的創新教育營造良好的教學氛圍

根據心理學家的研究發現,每個學生都具有一定的創新潛能,而且體現在不同的層面上,初中數學實踐性教學需要在良好教學氣氛下開展才能收到良好的效果,老師在教學中要對學生的創新潛能進行深層次的挖掘,并將其轉化為學生的創新能力。老師具備一定的創新能力是在數學實踐教學中有效開展創新教育的前提,在老師創新意識的感染下,學生會更加容易地獲取數學知識,更容易塑造創新能力。老師在初中數學教學中要不斷鼓勵學生在學習上進行創新,培養學生的創新思維,采用符合學生性格特點的教學方式。老師要不斷更新自己的教學方式和教學思想,不斷豐富自己的創新思維,只有這樣才能夠更好地為學生開展創新教育。輕松和諧的教學氛圍以及教與學的多元互動是培養學生創新能力的重要推動力,營造良好的教學氛圍要能夠吸引學生積極主動地參與課堂教學,并且進行積極思索。

二、教學內容與生活實際密切相連,使學生具有基本的創新意識

我們日常生活中遇到的許多問題需要用數學知識來解決,初中數學中的數學知識也是從日常生活中總結出來。在我們的日常生活中對數學知識的應用非常常見,當前數學教學與生活實際脫鉤是非常普遍的,時間久了就會對數學的學習失去興趣,因此,在日常的數學課堂教學中老師要將我們生活中的點點滴滴引入數學教學中來,為學生構建完善的數學知識結構,使學生的學習氛圍輕松而又和諧。我們生活中許多事例都可以作為老師向學生傳授知識的良好載體,問題的關鍵是要引導學生善于觀察,發掘生活中的數學問題,并對問題進行深入分析思考,學生之間要多進行交流,教會學生做到學以致用。通過將教學內容與生活實際相聯系,可以使學生逐步養成良好的數學思維習慣,因此,在初中數學教學中老師要以現實生活為立足點,將學生常見的事例引入課堂教學中,讓學生深刻體會到數學在生活中的重要作用,使學生意識到學習數學的重要性,提高學生學習的主動性。

三、引導學生進行探究活動,激發學生的創新思維

在初中數學教學中通過探究性教學活動可以有效培養學生的創新思維,讓學生自己動腦去探索數學知識的來源,數學教材是專家經過深思熟慮精心安排的完整的知識系統,很難從中看到數學家發現數學規律的思維方式,因此,在初中數學教學過程中讓學生通過自主學習,積極動腦思考,對數學教材中的結論進行探索,去尋找前人發現數學規律的腳步,用自己的方法對教材中的結論進行驗證,可以使學生透徹地理解這些數學規律,對于學生數學的學習和應用具有深刻的意義。通過這樣的方法既使他們獲得了知識,同時又使他們掌握了認識知識的方法,塑造了他們的探索精神和創新意識。例如,在學習北師大版九年級數學上冊中的“三角形中位線性質定理”這個定理時,老師可以引導學生展開這樣的探索性學習:

初中數學實踐性教學是對創新教育的有力支持,可以有效提高學生的創新能力,通過營造良好的教學氛圍,密切聯系生活實際以及引導學生進行積極探索可以充分體現創新教育的價值。當然培養學生的創新能力是一項長期的任務,需要在長期的教學中不斷總結經驗,逐漸改進教學方法,力求使創新教育更上一個新臺階。

參考文獻:

初中數學探索規律問題范文2

一、初中數學的開放性試題分析

初中數學試題開放性的主要表現:(1)問題的條件具有不確定性;(2)解決問題的策略多種多樣;(3)問題的結構具有多變性.由此可見,初中教學的開放性主要是根據中學生的個性差異所進行的有效教學.在解題的過程中,學生必須積極拓展自己的思維,綜合以前所學過的知識定理進行推理,得出正確答案.除此之外,初中數學試題的開放性主要取決于問題提出時學生對問題的認知能力的高低.

初中數學開放性問題主要分為條件開放型、結論開放型、情景開放型、方法策略開放型等多種類型.

(1)條件開放型.這樣的問題主要是具有根據所給的結論,進行反思和探索必須具備的條件,但滿足結論的條件具有多樣性.

例如,如圖1,AB=DB,∠1=∠2,請你根據所給出的條件適當添加一些必要的條件,促使ABC≌DBE.

(2)結論開放型.這類題目主要是在已經給定的條件下,對對象是否真實存在進行探索,包括結論存在或者不存在兩種狀況.解題的方法一般為三步:假設存在——進行推理——得出結論.

例如,已知函數圖像經過點A(3,3)、B(1,-1)兩點,請你寫出滿足上述條件的函數解析式,并簡要說明解答過程.

分析:該題由于函數解析式的類型未知,因此所確定的函數可能為直線、雙曲線、拋物線等,是一道結論開放題.

對于開放性試題大致就是如此,另外兩個類型就不一一舉例了.

二、初中數學開放性試題與封閉式試題相比具有的特點

與傳統的封閉式試題相比較,初中數學教學中的開放性試題具有以下幾個明顯的特點:

(1)初中數學開放題的內容具有條件十分復雜、結論具有不確定性、解題方法具有靈活性、沒有現成的模式可以進行套用等特性.除此之外,數學開放性試題具有十分貼近學生實際生活的各種各樣的題材,不同于只是依靠學生的記憶與套用固定的模式來解答問題的傳統的封閉式試題.

(2)初中數學開放性試題形式具有試題多樣性與內容生動性的特點.例如探求多種結論或者尋找更多的解題方法等,開放性試題完全體現出知識經濟發展時代下的現代化數學氣息,不同于封閉性試題只是形式單一,僅僅只有呆板的敘述方式.

(3)初中數學開放性試題解題過程中要求學生具有較強的思維發散性.開放性試題本身就有答案不唯一的特性.因此,在進行數學解題時必須要綜合多種思維方法,從不同的角度對試題進行觀察、分析、類比、歸納與概括等.

(4)初中數學開放性試題具有創新性的教育功能,既先進又高效,較強地適應了當前發展的需求,為進一步教學奠定了堅實的基礎.

三、初中數學學習過程中開放性試題的備考策略

1.初中數學學習關于“數”與“式”的開放性試題的備考策略

初中數學探索規律問題范文3

論文關鍵詞:初中數學,模擬實驗,求概率

縱觀新課標人教版初中數學統計與概率章節,筆者始終感覺用鍵盤問題做數學模擬實驗的教學載體,學生探究熱情低調,究其原因主要是缺乏農村學生數學生活化的體驗。通過幾年嘗試教學與改進,我們發現初中數學模擬實驗求概率的設計與應用可從以下角度思考和探索。

一、初中數學模擬實驗設計原則。

1、生活性。試驗內容要貼近學生生活,有利于學生經驗思考與探索,內容的組織要處理好過程與結果的關系,直觀與抽象的關系,生活化、情景化與知識化的關系.課程內容的呈現應注意層次化和多樣化,以滿足學生的不同學習需要.[1]

2、廣泛性。避免以點代面,全盤考慮初中數學論文初中數學論文,分點試驗。讓抽樣結果盡可能反映是按研究對象的共性特征。

3、隨意性。每次實驗方案的實施不提前預設,圍繞方案任意活動,并直接獲得需要的數據。

4、活動性。有效的數學教學活動是教師教與學生學的統一,學生是數學活動的主體,教師是數學活動的組織者與引導者,通過活動“致力于改變學生學習方式,使學生樂意并有更多精力投入到現實的、探索性的數學活動中去”,才能還學習真正動機――因活動而快樂,因快樂而學習.[2]

二、初中數學模擬實驗的適用條件。

由于隨機事件的結果具有不可預測性,往往解決相關實際問題難以從根本上把握。分清初中數學模擬實驗的適用條件,是進行有效設計和準確應用的關鍵畢業論文格式范文期刊網。

通過對模擬實驗相關事件的綜合分析,以及與列舉法求概率相關事件的對比,我們不難發現模擬實驗求事件的概率適用條件包括每次實驗的所有可能結果不是有限個或每次實驗的各種結果發生的可能性不相等。[3]

三、初中數學模擬實驗的設計程序[4]與過程

1、確定設計方案(如投飛鏢、做記號、數數量、拋硬幣、擲骰子、轉轉盤、等)。

2、擬定統計欄目(總數、頻數、頻率)。

3、統計相關數據, 計算頻率與數據規律分析。

在做大量重復試驗時,可事先根據概率要達到的精確度確定數據表中頻率保留的數位。計算頻率一般保留兩位或三位小數。

初中數學探索規律問題范文4

行合理的導入和學習,并在生動直觀、有效的數學問題情境下對數學知識進行觀察、分析、類比和歸納、推斷等,從而提升學習效率。

關鍵詞:新課程改革;初中數學;創新

初中數學是一門偏重于理性思維的課程,是對數學領域內的知識概念和規律性的歸納和推理性的學習,在傳統數學教學中由于采用無差異式的教學方式,導致學生對數學知識沒有進行科學且有針對性的學習,對于大量的數學題海性內容無法進行全面的歸結和把握,從而無法激發出對初中數學學習的熱情和參與積極性,使初中數學課堂呈現出沉悶枯燥、缺乏新穎刺激的氛圍,達不到預期的數學課堂教學效果。

一、初中數學課堂教學的原則和要點把握

1.要注重初中數學課堂教學的“以學為主,以教為輔”原則

初中數學課堂教學要培養學生的理性思維和抽象分析能力,在這個培養過程中,需要教師的精心課堂導入設計和有效的策略引用。但是,在實踐教學課堂中,存在師生之間的互動脫節問題,因而,在初中數學課堂教學中,要以學生為主體進行不同差異之下的課堂教學,不是為了“教”而“教”,而是為了“學”而“教”。

例如,在初中數學一元二次方程b2+2b+1=2的課堂教學中,要引導學生進行方程式的觀察和思考,而不要急于進入運算過程,

要讓學生進行自主的思考和探究,尋找到方程式左邊的列式可以表現為(b+1)2,教師在學生觀察思考的前提下,可以指導學生運用直接開平方法的方式來加以演算。然后,可以進行更進一步的方程式變化探析,將上述一元二次方程式變換為:b2+2b-1=0,學生進入變化方程式的思索之中,對前一個方程式進行化簡運算,即可衍變為b2+2b-1=0,從而發現數學方程式的規律,掌握數學知識的靈活變化形式及其內在的數學邏輯性,在學生自主的思維中提升教學效果。

2.教師的課堂教學引入要遵循學生的認知規律

初中數學知識不是一蹴而就的,它是一個漸進的過程,需要根據學生的既有數學知識體系進行引導,教師要了解不同學生的數學知識的層次水平,進行學生舊有知識和新知識的結合,使學生在對舊知識結構進行深層次的引發和思維之下,掌握相應層次的數學新知識,例如,在學習初中數學的立方根知識時,教師要把握學生的認知狀態,從之前學習的平方根和乘方運算的數學舊有知識入手,進行以舊帶新的數學知識學習,從而把握數學基本概念,引發數學邏輯性推理。

3.初中數學教學還要培育學生的數學集中思維和發散思維

學生對于數學這門抽象性學科的學習需要有一定的思維運用過程,而在初中數學的課堂教學中,教師要逐步引導學生進行思維,而不是一味地讓學生進行題海式的解答。例如,在初中數學的“同類項”教學中,要注重直觀、具體物體的導入,實現從具體到抽象、從直觀到內隱的數學思維。可以運用實在的生活物體,如,蘋果、香蕉、梨、菠菜、土豆、冰棒、巧克力等,指導學生對不同生活物體進行分類,在具體物體的熟悉認知下,學生可以輕而易舉地進行分類區分,這時再引入同類項的數學概念,引導學生由生活實物融入數學概念,從而鍛煉和啟迪學生的數學思維能力。

4.注重數學課堂教學的多元化、多角度訓練

初中生具有活躍的思維特點和豐富的想象力,在數學教學中,

要采用多元化、多角度的教學策略,要根據學生的理解程度進行精心的導入、靈活的課堂策略變換,使學生在教師多維的指導之下進入初中數學的知識殿堂。

二、初中數學在新課程改革視野下的教學創新探索

1.倡導以人為本的數學學習情趣的創設

在初中數學課堂教學過程中,要遵循以學生為主體的理念,在新課程改革指導下,增強數學學習的趣味性,在學生手腦并用的學習過程中寓教于樂,提升數學學習效果。例如,可以引入初中數學“算24”規律性認識學習,通過娛樂形式的撲克牌為例,規定26張黑色牌是正數,26張紅色牌是負數,還規定撲克中的花牌J=11,Q=12,K=13,并以數學科學規律“組間同質,組內異質”進行兩人一組的分配,在兩組不同的“算24”比賽中,學生感受到數學學習的快樂,并在數學娛樂的情趣融入下,進行以學生為主體的情感交流,并且掌握了數學加減乘除、平方等公式的交錯式運算方式,提高了數學思維能力,強化了解決數學問題的能力。

2.結合實踐動手操作,增強數學概念認知和學習

在新課程改革背景下,初中數學教學的組織與引導是教師需要精心設計的內容,在多維的教學目標下,要引導學生進行實踐動手操作,在動手動腦的實踐過程中,增強學生對于初中數學概念和內容的認知和學習。例如,在“測量物體的高度”教學活動中,為了讓學生掌握抽象的數學理念,可以引導學生進行實踐活動,對已知高度的測量實踐以及對未知高度的測量實踐有助于拓寬學生的數學學習思維,如,坐椅、欄桿、路燈、商品房等,學生在實踐的過程中進行交流和討論,在小組合作、探究、自主的學習狀態下,可以提高學生的數學觀察能力、邏輯思維能力和實踐能力。

3.創設數學問題情境,逐步引導學生探究

在初中數學課堂教學中,教師要利用各種資源進行數學問題情境的創設,要借助于多媒體等信息化教學手段,將學生引入問題探究的情境之中,使學生在問題情境之下進行數學推理思維的學習。首先,教師要精心設計適宜的問題導入課堂,學生在輕松自如的問題導入下自主思考和主動參與,在這個前提下,教師可以導入與數學課程相關的問題情境,并使用多媒體課件進行復雜圖形的繪制,在立體感強的工具輔助教學下,快速引導學生進入學習狀態,活躍學生的思維,推動學生進行歸納、推理和總結,從而得出數學知識的概念性認知和數學結論。

4.借用數學生活素材,激發學習數學的興趣

在初中數學教學過程中,可以與生活情境的實際物體進行聯系,引導學生進行生活化的體驗和認知,并從中抽取數學化的知識,在剝繭抽絲的過程中培養其數學邏輯思維。例如,在初中數學的幾何教學中,可以借助于生活實例進行理解:課本、操場的平面圖形、立體教室、雕塑的空間圖形,可以引發學生對點、線、面、體的數學認知;還可以利用學生喜愛的電影座位排號順序導入平面直角坐標的數學學習;水銀體溫計可以導入數學正負數的學習;翩翩起舞的蝴蝶、美麗的剪紙可以導入數學的軸對稱圖形的學習等。在這些與生活內容密切相連的實際物體之中,可以融入初中數學的知識性內容,在學生生活體驗的感知下進入數學概念性的認知和理解。

總而言之,初中數學教學要在新課程改革的背景下,進行教學理念的創新和教學方法的優化,教師要以學生為主體,進行以學生為主、教師為輔的教學,利用不同的教學策略,激發學生的初中數學學習興趣,用生活化情境、問題情境等教學方式,引發學生的數學思維,提高學生的數學思考能力和解決數學問題的能力。

初中數學探索規律問題范文5

一、初中數學變式訓練的價值分析

1.提高了學生學習積極性。學生課堂參與情況在極大程度上影響著教學效果,為提高學生課堂參與度,培養學生參與意識是首要任務。“強化學生在數學教學課堂中的參與度,培養學生主人翁意識,讓學生成為真正的課堂主人,乃當今數學教學趨勢所向。”初中數學變式教學在課堂中的運用,使得多題重組和一題多用被普遍認同,給學生以新鮮感受,激發了學生求知欲和好奇心,能在很大程度上提升學生參與積極性和主觀能動性,進而保證了課堂教學活躍氛圍和質量。

2.發散了學生思維。初中數學變式訓練在教學課堂中的運用使得學生不在局限于事物表象,而是自覺深入到探索事物本質上,看待問題比較全面,能從多個角度分析事物,學會了尋找各個事物間的相互聯系,并以此來理解事物本質特性,這樣就減少和克服了因絕對化的思維模式導致的思維惰性和思維僵化,發散了學生思維,讓學生思維走向多方向發展道路,擴寬學生思維模式。

3.創新了學生思維模式。思維的創造性作為衡量學生思維水平重要標準之一,思維的創造性體現在學生能夠探索、分析、創新、發現及解決他人或自己并未發現過或還尚未得到解決問題,而想培養學生這種可貴思維模式,勢必要為學生提供有發現價值的材料。初中數學教學引起材料的有限性,導致某些有價值的內容不可避免出現欠缺現象。而導致這一缺失現象本質原因在于對數學規律和原理教學闡述時,大多將數學家真實的發現過程省略了。對此,教師就需要進行彌補,通過研究對象變式來設計規律材料,指引學生去發現,并利用已學知識探索和分析,從而培養學生創新思維模式。

4.培養了學生評判思維?!俺踔袛祵W教材中,很多內容存在著相似之處,數學中許多方法、定理、公式、法則和概念,由于他們內容的相似性,使得大多學生學習時,難免存在混淆。”而對比、辨析、演變就是針對某一具體問題提供正誤答案,然后讓學生在分析、思考基礎上判斷哪個錯誤以及哪個正確,同時給出理論依據和計算過程。這種變式教學法,能夠讓學生看清問題本質,掌握問題實質所在,客觀的對事物教學評價,提升學生辨別是非能力,進而培養出學生的批判思維。

二、初中數學變式訓練對優化課堂教學的作用

1.協助學生理解基礎概念。概念作為數學知識基礎內容,初中生要想將數學學好,掌握概念本質和理解概念的內涵與外延是前提。只要這樣就可形成準確的數學概念并將各知識點有效串聯,形成系統化知識,以便游刃有余地解決相關數學問題。課堂教授數學概念時,將變式訓練運用到課堂中,首先可引導學生主動探索問題,形成數學概念,然后再通過對概念非本質的屬性進行改變,讓學生深刻理解概念的本質特征,進而提升學生區分和辨別相關概念能力。

2.加大了學生對公式靈活運用的程度。初中生在學習數學公式時,大多采取機械式被動記憶,這種背公式方法,讓學生雖然將公式記在腦中,卻不知如何運用,判斷學生是否真正掌握公式標準在于看其靈活運用公式與否。對此,數學課堂中,若能在短短幾十分鐘內讓學生看到盡可能多公式的變形樣式,同時在各類形式中發掘內在規律,就可在指導學生更好記憶、運用公式基礎上,培養學生歸納和洞察能力。采取多樣式變式能有效達到以上目的,成為課堂教學優勢所在。

例2 辨析下列式子是否能用平方差的公式進行計算,同時指出公式里a、b.

第一組:(3m+4n)(3m-4n);(-3m-4n)(3m-4n);(-3m+4n)(-3m-4n);(-3m-4n)(3m+4n).

第二組:(3m+4n+3)(3m-4n-3);(-3m-4n-3)(-3m+4n+3);(-3m+4n+3)(-3m-4n+3);(-3m-4n-3)(3m-4n+3).

通過以上兩組變形就可加深初中生對平方差公式的認識與掌握,同時發現平方差公式(a+b)(a-b)=a2-b2里,a和b不僅可以為字母,同樣可以為負數或正數,再或者為代數式,進而可通過變式公式掌握公式本質特點。在學生理解a、b特點之后,就可通過進一步變換式子的形式,來培養學生把所探索到的規律運用到解題中。

3.推動學生對解題方法的正確掌握。雖然數學習題變化多樣,但是采取題海戰術進行數學的學習不是教學所推廣的。為有效避免題海戰術,教師需要正確引導學生對問題進行多角度探索。針對一道題采取各種方法進行解答,或者將某道題解答方法巧妙運用到另外一類題型中,通過類比方法,熟練掌握相似題型解題手法。而為了實現以上目標,教師要采取變式訓練教學方法,有目的的指引學生在變化題目里找尋不變規律。

針對這一題型,因為不會看到解題過程,為了加快解題速度,可以采取取值法。令a=3;b=4;c=5,將所取值代入代數式,得到所求代數式的值為。

初中數學探索規律問題范文6

關鍵詞 探究式教學;初中數學;應用

一、當前初中數學教學現狀

當前初中數學課堂教學模式依然沿用傳統的教學模式,學生的學習方式多以被動接受為主。在教學過程中,教師以講授為主,進行填鴨式教學,很少讓學生通過自己的實踐活動來獲取知識。學生查閱資料、分組討論的學習活動更是少之又少。教師講授的知識,還是單純的讓學生死記硬背,教學效果可想而知。這種單一、被動的學習方式往往使學生感到枯燥、乏味,而且負擔很重。這種狀況應該有所改變,新的課程標準指出,“有效的數學學習活動不能單純地依賴模仿和記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式?!币虼耍S著課程的改革,教學也要作出相應的改革,探求一種與我們的實際相適應、符合新課程理念的教學模式成為必然。

二、探究式教學模式及其特征

探究式課堂教學模式是指在課堂教學過程中教師創設一定的問題情境來激發學生的興趣,通過學生主動參與、實踐,思考研究,并在教師指導下獲取知識的一種教學模式。其目標是發揮教師學生在課堂教學中的雙主體作用,提高學生的學習興趣以及自學能力,進而培養學生的思維能力和主動獲取知識的能力。與傳統教學模式相比較,探究式課堂教學模式有它自己的特征: (1)問題性。探究式學習方式特別強調問題在學習過程中的重要性。一方面強調通過問題來學習,把問題看作學習的動力、起點和貫穿學習過程的主線索;另一方面把學習看作是發現問題、提出問題、分析問題和解決問題的過程。

(2)過程性。探究性學習特別強調學習的過程性。所謂學習過程就是達到學習目的或獲得結論必須經歷的活動。學習的重要目的之一就是理解和掌握正確的結論,所以必須重視結論。但是,如果學生不經過自己一系列的質疑、判斷、比較、分析、推理、概括等活動,就難以理解、掌握和鞏固結論。所以,學習不僅要重視結論,更要重視過程。

(3)獨立性。獨立性是指學生獨立去思考問題、探尋解決問題的方法??鬃诱f“學而不思則罔,思而不學則殆”,這深刻說明了學習與思考的辯證關系,所以,要充分尊重學生的獨立性,正確引導學生發揮自己的獨立性,鼓勵學生獨立思考,從而培養學生獨立學習和獨立解決問題的能力。

(4)合作性。探究性學習特性之一是通過學生合作交流、共同探究來發現問題、解決問題。明代學者顧炎武說“獨學無友,則孤陋而難成;久處一方,則習染而不自覺?!边@足以說明合作學習的重要性。探究式學習要求學生在獨立思考的基礎上,通過合作交流,拓寬思路,掌握更多解決問題的方法和途徑,提高學生解決問題的能力。

三、探究式課堂教學模式在初中數學教學中的應用

1.創設問題情境,激發探究欲望

探究式課堂教學模式要想收到良好的教學效果,問題情境的設置是關鍵,教學實踐證明,設置一個較好的問題情境,能夠激發學生的學習動機和好奇心,培養學生的求知欲望,調動學生學習的積極性和主動性,引導學生形成良好的意識傾向,促使學生主動地參與。那么怎樣的問題情境才算是好的呢?筆者認為在問題情境創設過程中要把握住以下幾點:

第一,以趣入境,巧設懸念。教師要學會分析不同班級學生的學情,不同班級的學生,班風、學風自然不一樣,學生的興趣愛好也不同,所以教師在設置問題情境的過程中要注意分析學情,抓住學生的興趣愛好來設置問題情境,這樣會受到事半功倍的效果。

第二,以疑入境,誘發討論。教師在教學時應遵循學生獨立思考和探索的愿望,不要把課堂變成教師的絕活表演場,可以設置具有挑戰性的問題情境,提出具有一定跨度的問題串引導學生進行自主探索。通過“與同學交流你的想法”等語言鼓勵學生進行交流,引起學生思維的沖突,發展其創新意識與實踐能力。 2.開展自主探究,培養創新思維

在教師的主導下,堅持學生是探究的主體,根據教材提供的學習材料,伴隨知識的發生、形成、發展全過程進行探究活動,教師著力引導多思考、多探索,只有這樣,才能使學生親身品嘗到自己發現的樂趣,才能激起他們強烈的求知欲和創造欲。只有達到這樣的境地,才會真正實現主動參與、積極探索。具體應把握以下幾點:

第一,營造氛圍,發展思維?!皠撔率且粋€民族不竭的動力”,因此,在課堂教學過程中要注重對學生創新性思維的培養,在課堂的教學過程中學生對問題如果可以提出不同的見解,創新思維就會不斷得到發展,也就達到了舉一反三的教學目的。

第二,變式應用,深入探究

變式教學是對數學中的定理和命題進行不同角度、不同層次、不同情形、不同背景的變式,以暴露問題的本質特征,揭示不同知識點間的內在聯系的一種教學設計方法。在課堂的教學過程中把問題步步深入,把傳統題型向變化題型、應用題型轉化,讓學生大膽的去猜想、去操作、去探索、去研究、去以自己的方式構建自己的認知結構,去嘗試發現根據圖形的不斷變化之中不變和變的問題,從而發現其規律。

3.發現驗證規律,提高總結技能

初中數學的內容充滿了用來表達各種數學規律的模型,因此,在教學過程中應該讓學生充分地經歷探索事物的數量關系、變化規律的過程。對于學生在自主探索新知提出的問題,大膽的猜想,教師要通過各種形式加以驗證;同時要組織好學生交流探究歸納出新知識新方法應用于實踐,解決實際問題,這是知識遷移形成和發展的過程。

總之,“教學有法,教無定法,貴在得法”。新教材給了我們一個更為廣闊的空間,在今后的教學過程中,我們要不斷更新教育觀念,深入鉆研教材利用好教材、挖掘教材、補充教材,優化教法,在教學實踐中不斷探索完善,只有這樣才能培養出更多勇于開拓創新的新人才。

參考文獻:

[1]全日制義務教育《數學課程標準》(實驗稿)[M].北京師范大學出版社.

[2]張力瓊.初中數學教學中滲透數學思想方法的教學策略研究[D].西北師范大學.2007年.

亚洲精品一二三区-久久