人工智能在醫療方面的作用范例6篇

前言:中文期刊網精心挑選了人工智能在醫療方面的作用范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。

人工智能在醫療方面的作用

人工智能在醫療方面的作用范文1

摘要:人工智能的迅速崛起,為老年健康管理提供了全新的途徑,在優化老年健康管理全過程中發揮著重要價值。與此同時,因其服務于老年人這一特殊群體,對道德倫理的沖擊表現得更加突出。當前,伴隨著我國政府對人工智能的高度重視、企業與醫療機構的積極探索,人工智能在老年健康管理領域已積累了部分經驗,取得了初步進展。然而目前人工智能在老年健康管理中的應用仍處于起步階段,面臨價格壁壘難以突破、信息孤島劣勢明顯、多方主體合作不足、專業人才稀缺等現實問題。推進人工智能與老年健康管理的深度融合,需要政府、醫療機構與養老服務中心、科技企業等多方聯動,構建配套管理機制,從而使人工智能更好地服務于老齡化社會。

關鍵詞:人工智能;老年健康管理;老齡化;養老問題

作者:向運華王曉慧(武漢大學社會保障研究中心,湖北武漢430072)

人口老齡化是21世紀我國經濟社會發展的重大國情,截至2018年底,我國60周歲及以上人口有2.49億,占總人口的17.9%。人口老齡化態勢加劇的同時,空巢老年人占比持續攀升,獨居老年人群健康狀況不容樂觀,有74.7%的老年人患有至少一種慢性疾病。城鄉失能、半失能老年人口近4063萬,上門看病、康復護理等醫療健康類服務需求始終居于老年人各類需求首位??倳浢鞔_指出“為老年人提供連續的健康管理服務和醫療服務”,健康老齡化成為健康中國時代和老齡化時代的重要命題。

萬物互聯的加速到來與人工智能技術的迅速崛起,正在改變著人們的社會資源獲取方式和生活方式。AlphaGo大勝人類棋手,標志著人工智能已在某些領域走到了人類智慧的前列。以互聯網為載體和AI為實現工具的經濟發展新形態正在逐漸形成,為社會各領域創造了前所未有的機遇,也給老年健康管理模式的突破與創新提供了現實可能。智慧健康養老由此產生,其最大的特點在于大數據收集、需求的智慧決策與服務的精準投放。2017年工信部、民政部和衛計委聯合印發《智慧健康養老產業發展行動計劃(2017-2020年)》,強調利用新一代信息技術產品推動健康養老服務智慧化升級。各地積極開展智慧健康養老應用試點,打造“硬件環境+智能設備+互聯網信息平臺+居家養老服務”的健康養老生態系統。如何發揮人工智能技術在老年疾病預防、診斷、緊急救助、治療與康復中的作用,如何有效聯接醫療服務機構以確保老年人享受到更高效、更優質、更便捷的健康服務,是當前亟待研究的現實問題,這對于降低空巢老人獨居風險,緩解老年護理人員短缺問題,提高老年人的健康水平具有重要價值。

一、立場博弈:人工智能時代老年健康管理的機遇與隱憂

(一)人工智能的崛起

人工智能(ArtificialIntelligence,簡稱AI)起源于1950年“圖靈測試”的理念,其首次被公開提出可追溯到1956年“人工智能之父”McCartney在美國會議上的報告。隨后人工智能隨著技術的發展、社會的進步不斷發展,1960年人工智能已能夠理解自然語言、自動回答問題和分析圖像圖形等,20世紀80年代又獲得了學習和認知能力。21世紀以來,物聯網的加速普及、大數據的崛起、云計算等信息技術的突破,人工智能迎來了發展高峰,逐漸形成了深度學習、跨界融合、人機協同、群智開放、自主操控等新的特征,開始具有自我診斷、自我修復、自我復制甚至自我創新的能力①。人類相繼進入了網絡社會時代、大數據時代與人工智能時代,三者共同構成了新的社會時代②。

關于人工智能的概念,國際人工智能專家N.J.Nilsson將人工智能視為怎樣表示知識、怎樣獲得知識及怎樣使用知識的科學③。其后,學者對人工智能的概念從類人、理性、思維與行為等四個方面著手定義,有學者進而從學科角度對人工智能進行了解釋,如國內學者吳漢東將人工智能定義為研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。綜合諸多學者對人工智能的認識,筆者認為人工智能的實質是基于人類的設定與要求,能以與人類智能相似的方式作出反應的智能機器或軟件。

人工智能時代的到來,正在改變甚至顛覆人類現存的生產、工作與交往方式。2016年美國的《國家人工智能研究和發展戰略計劃》指出,AI系統在某些專業任務上的表現勝于人類。1997年國際象棋、2011年Trivia、2013年Atari游戲、2015年的圖像識別與語音識別、2016年AlphaGo等AI產品的問世與應用,成為AI超越人類的里程碑事件,見證了AI的智能水平和社會意義。近十年來,人工智能愈發廣泛地應用在社會各個領域。農業領域,人工智能應用于自動播插與灌溉、日常田間管理、采收與分揀、產品檢驗、虛擬在線銷售等產前、產中和產后各個環節,大大減輕了人類的勞動量④。工業領域,工業機器人廣泛應用于汽車、電子、家電制造等生產線,緩解勞動力供需矛盾的同時提高了生產效率。服務業領域,微軟“Cortana”、蘋果“Siri”、聯想“小樂”等智慧客服系統為大眾所熟知;幾乎所有股票交易員已被機器人取代,投資顧問、風險審查和安全防范監控監管都普遍智能化。公共服務領域中,人工智能亦發揮著日益重要的作用,如用人臉對比技術來篩查犯罪分子;人工智能輔助醫療診斷與手術;人工智能用于智能評測、個性化輔導等等。人工智能也開始進入藝術創作領域、心理服務領域。學界普遍認為,弱人工智能技術在當前已基本實現⑤。

(二)人工智能時代老年健康管理領域的機遇

當前,在新一代信息技術的引領下,物聯網迅速普及,大數據快速積累,算法模型與運算能力持續突破,智能行業應用快速興起,為我國人工智能的迅速崛起提供了現實契機。從人工智能技術層的語音識別、自然語言處理、圖像識別和生物識別等,到人工智能應用層面的工業4.0、智能農業、無人駕駛汽車、智能家居、智能金融、智慧醫療與智能教育等,均得到了爆發式增長。我國正處于醫療人工智能的發展高峰,2016年中國人工智能+醫療市場規模達到96.61億元,增長37.9%。據估計到2025年人工智能應用市場總值將達到1270億美元,其中醫療行業將占市場規模的五分之一⑥。人工智能在老年健康管理中的應用主要體現在通過生理參數識別設備和無線射頻識別裝置等智能采集老年健康數據,為老年人提供雙向、互動的居家健康監測、健康咨詢、健康評估、健康干預服務以及緊急救助服務,克服時空限制,將健康管理貫穿疾病預防、診斷、治療與康復整個過程。人工智能時代為健康管理尤其是老年健康管理提供了全新的途徑,在優化老年健康管理模式過程中具有重要價值。

第一,人工智能的發展為緩解醫護人員短缺提供了現實可能。據世界衛生組織公布的數據,歐盟關于每千人擁有護士數量的基本規定是不少于8人,挪威以17.27人位居世界第一,美國和日本分別是9.8人和11.49人,發展中國家例如巴西和南非,分別是7.6人和5.1人,然而我國每千人擁有護士數僅為2.36人。即使是按照大多數國家的5‰計算,我國護士缺口也多達350多萬,如果按照歐盟的標準,則缺口更大。與此同時,我國社區養老服務專職人員數量少且增長速度緩慢。民政部2009年開始統計社會服務職業技能人員中的養老護理員,截至2016年我國養老護理人員僅8528人。根據第四次中國城鄉老年人生活狀況抽樣調查結果,目前我國失能、半失能老年人口約為4063萬,占老年人口數的18.3%,按照3:1的國際標準計算,我國需要超過1300萬的護理人員。同樣,雖然國家大力推進醫養結合,將老年人作為重點人群納入家庭醫生簽約服務,但家庭簽約醫生覆蓋率仍不容樂觀。如何“以少足多”是擺在當前我國政府面前的重要議題之一。人工智能的崛起為化解這一醫療難題提供了新路徑。人工智能環境下,智能護理等機器的應用與推廣,大大減少了老年人對護理人員的需要,虛擬醫療助手替代護士,在醫生診療之外提供輔的就診咨詢、健康護理和病例跟蹤等服務,既減少了老年人前往醫院就診的次數,又有助于提高護理能力。顯然,這些對于緩解老年健康供需矛盾有積極意義。

第二,人工智能的發展為醫療機構提高服務效率提供了技術支持。一直以來,醫療服務效率都是備受關注和爭議的問題。醫療服務效率,即醫療機構在投入與產出之間的比率,是醫療服務領域的核心命題與重要目標。近年來,隨著我國醫療體制的不斷改革與發展,各級醫療機構的效率有了顯著提升,但受制于傳統醫療機構管理模式的慣性思維影響,醫療機構的服務效率與民眾期望仍有差距。新時代醫療服務效率的提升不僅需要制度的變革,也需要服務工具的革新。人工智能的發展為優化醫療服務提供了便利。一方面人工智能的應用降低了人力成本。醫學影像占醫療數據的90%,而且這一數據仍在攀升,年增長率約為30%,而放射科醫師數量的年增長率僅為4.1%,遠不及影像數據增長速度。借助AI技術分析醫學影像,將大大緩解醫院缺少醫生的壓力。此外,語音技術在醫療行業的普及,也正在將越來越多的普通醫生從日常機械式的醫案錄入工作中解放出來,提升錄入的效率,降低失誤率。另一方面,人工智能的應用也提高了醫療服務能力。人工智能輔助診斷技術應用在老年人某些特定的病種領域,幾乎可以代替醫生完成疾病篩查任務;智能手術機器人的應用既能保證精準定位,減少老年患者的疼痛,又能防止傳統手術易帶來的傳染疾病等危險;人工智能參與藥物研發,對于提高針對老年患者潛在藥物的篩選速度和成功率,縮短研發時間與成本有實際意義。綜上,人工智能的嵌入打破了以往醫治全程醫生親力親為的運作模式,智能機器的自主研判與決策能力,對于降低人力成本,大幅提高醫療機構、醫生的工作效率與質量,減少不合理的醫療支出有積極意義。

第三,人工智能的發展有助于提高老年人自我健康管理能力。多數疾病都是可以預防的,但是由于疾病通常在發病前期表征并不明顯,到病況加重之際才會被發現。而且由于老年人機體形態的改變和功能的衰退,對于疼痛和疾病的反應變得不敏感、不典型,很多病癥易被忽略或誤診,加上老年人行動不便,其中有多數老年人即使不舒服也不愿前往醫院進行診療。人工智能的應用大大緩解了這一狀態。人工智能技術與醫療健康可穿戴設備的結合可以實現疾病的風險預測和實際干預,實時監測老年人的生理參數,其雙向數據傳輸、在線溝通、便捷有效的特點,一方面可幫助老年人實時了解與掌握自身的健康狀況,享受個性化的健康管理和健康咨詢服務,滿足其健康教育需求;另一方面也能提高老年人自我健康管理意識,促進其積極參與自我健康管理和自我照顧,實現醫療衛生服務重心前移和全民健康管理。人工智能環境下的自我健康管理的實現延伸了傳統醫療的覆蓋能力,節省了傳統醫療方式的時間、空間成本及醫療費用,能夠有效緩解老齡化帶給整個社會醫療系統的負擔。此外,居家健康管理系統能為衛生管理者提供健康數據,有助于建立完備、標準化的居民電子健康檔案和區域衛生信息共享平臺,使政府突發公共衛生事件監測和應急體系的運轉更為高效、準確。

(三)人工智能時代老年健康管理領域的隱憂

萬物都有兩面性,人工智能同樣是把雙刃劍,人工智能從誕生至今,其對倫理的沖擊就不斷被討論。人工智能給老年健康管理帶來巨大便利的同時,也對道德倫理問題提出了重大挑戰。與人工智能的一般倫理問題相比,人工智能在老年健康管理中的應用因其服務于老年人這一特殊群體表現得十分特殊與突出。主要表現為兩個方面,一是老年人人格與尊嚴的多方面權益保障倫理問題更為加劇,二是老齡社會正義倫理問題更顯突出。

老年人人格與尊嚴的多方面權益保障倫理問題體現在隱私泄露、社會孤立與老年人的“物化”三個方面。首先,為更好地提供全方位健康管理服務,智能老年健康管理系統和智能設備需要采集老年人日常起居全時段、全方位、無盲區、長周期的海量生理數據,其中絕大多數的數據屬于隱私數據。這些數據通過簡單的分析和挖掘,就能得出老年人的生活習慣、身體狀況等信息,一旦被無意或有意泄露,極易被不法分子所利用以進行精準推銷甚至精細詐騙等違法活動,這對于易受騙的老年人群體來說無疑是巨大的隱憂,由此可能帶來的損失也不可小覷?!妒澜缛藱嘈浴返?2條規定任何人的私生活、家庭、住宅和通信不得任意干涉,他人的榮譽和名譽不得加以攻擊。正如一些學者認為我們應該對于弱勢群體運用特別的隱私保護政策①。然而目前我國的相關法律和政策還不盡完善,如有關病歷資料保護的法律或文件(《刑法》《侵權責任法》《醫療機構病歷管理規定》等)中多為宣示性條款,也尚無老年人隱私安全的針對性文件。如何保證健康數據在實時采集、傳輸、存儲、分析與使用過程中的安全,數據應當被保留多久、誰擁有隱私數據的訪問權等都是智能老年健康管理領域亟需解決的隱私方面的具體倫理問題。其次,智能機器監護老年人可能導致減少老年人社交、子女的陪伴。關于智能護理機器人的引入對老年人心理問題的影響研究表明,使用護理機器人的老年人易出現社會孤立現象,進而導致尊嚴受損②。過多的智能既會減少老年人外出和交流的頻率,也使子女或親朋責任感降低,對老年人的關懷止于虛擬問候,而不再是頻繁地看望與聊天。有學者認為,健康助手功能會使原本親近的護理關系轉換為遠程的虛擬的照料關系③。從而加劇老年人心理上的空虛感與孤獨感。如何緩解和調節老年人心理問題是人工智能在老年健康管理應用過程中不得不面對的問題之一。最后,老年人的“物化現象”也是值得關注的具體倫理問題。所謂物化,Kitwood對其的定義是:像對待無生命物質那樣對待人:推、拉、拽一個人,不把他當作一個有生命的個體。Astell曾認為輔助機器人可能會機械地控制使用者,并逐漸使其變得失去自主性④。智能護理機器人等操控式的服務過程有可能損害老年人自主意愿,老年人普遍認為不應該限制他們自主選擇的權利,如他們不希望所有人知道他們在家中跌倒,因為某些跌倒僅是小事,自己可以克服,他們認為只有自己需要幫助的時候才應通知別人。然而這與智能護理系統一旦發現護理對象跌倒,就立即發送消息給親人或醫護人員的護理策略相矛盾⑤。機器人應在何種程度上保障老年人的自主意愿,減輕其心理負擔,維護其尊嚴,是值得研究的課題。

老齡社會正義倫理問題主要體現在地區差異方面。由于我國國土面積大,各地區經濟發展水平并不一致,地區差異、城鄉差異問題都不容忽視??紤]到護理服務涉及人最基本的健康權利,然而由于經濟發展和收入水平不同,偏遠地區、農村的互聯網都不暢通,健康信息系統建設不到位⑥,老年人往往無力購買智能可穿戴設備、智能護理機器人等健康管理機器,貧富差距引發的社會資源分配不公問題凸顯。如何在研發和推廣智能設備中充分考慮老年人的購買力,是關乎社會正義的倫理問題。

二、現實考察:人工智能時代老年健康管理的困境

(一)人工智能時代老年健康管理的經驗

改革開放以來,尤其是進入21世紀之后,我國人工智能技術得到了巨大的發展。據中國電子信息產業發展研究院數據統計,2017年我國人工智能市場規模為216.9億元,比2016年增長52.8%,增長速度快于全球平均水平,2020年有望超過700億元①。其中,“人工智能+融合醫療、金融、教育和安防等領域企業”位居全球人工智能目標市場行業首位,總計占比40%。國家高度重視,企業與醫療機構積極探索老年健康產品的研發、推廣與應用,先后積累了一些經驗,取得了初步進展,為人工智能服務于老年健康管理奠定了重要基礎。

首先,信息化與大數據推動智慧醫療的發展,為人工智能在老年健康管理中的應用提供了技術支撐。信息化與大數據是人工智能有效嵌入的基本要素,因此醫療信息化的實現和醫療大數據資源的壯大是推動人工智能在老年健康管理應用的重要基礎。近幾年來,高速、移動、安全的新一代信息基礎設施建設加快,城市社區光纖網絡覆蓋率不斷提升,中國互聯網絡信息中心(CNNIC)的《中國互聯網絡發展狀況統計報告》顯示互聯網逐漸向高齡人群滲透,60歲以上老年人對互聯網的接觸率和應用率逐年上升。與此同時,健康養老服務信息平臺建設不斷推進,早在2011年,老齡辦和民政部門就在全國范圍內推進社區為老服務信息平臺建設項目啟動試點工作,試點項目50余個,據統計覆蓋老年人口僅3000多萬;2014年民政部和發改委確定在全國選取了42個地區推進養老服務業綜合改革試點,改革的重點之一即是加快信息平臺建設。2018年國務院《關于促進“互聯網+醫療健康”發展的意見》,強調推進遠程醫療覆蓋全國所有醫聯體和縣級醫院,支持高速寬帶網絡覆蓋城鄉醫療機構,建立互聯網專線保障遠程醫療需要。“互聯網+醫療服務”建設初具規模,各級醫療機構、養老服務機構積累了大量老年人有關的數據資源,其中包括老年信息數據庫建設與大數據共享平臺與服務平臺建設,為下一步人工智能的嵌入奠定了堅實根基。

其次,國家高度重視,政策與法律建設不斷推進,為人工智能在老年健康管理中的應用提供了制度基礎。一方面,為推動人工智能的迅速發展,近年來我國人工智能領域指導性政策文件不斷出臺。如2017年7月國務院印發《新一代人工智能發展規劃》,同年12月工信部公布《促進新一代人工智能產業發展三年行動計劃(2018-2020年)》,明確了我國新一代人工智能發展的戰略目標,部署構筑我國人工智能發展的先發優勢,加快創新型國家和世界科技強國建設。2018年1月中國電子技術標準化研究院《人工智能標準化白皮書(2018版)》,提出確立人工智能產業發展的標準體系;3月政府工作報告明確指出加強新一代人工智能在醫療、養老等多領域的應用。各省市積極響應,出臺本地區的具體實施意見,為人工智能在老年健康領域的應用確立了方向。另一方面,為應對各類風險與危機,我國不斷推出信息建設與信息安全的相關規定。據統計目前我國信息治理層面的相關法規已有100余件,涉及個人信息保護、網絡侵權預防和網絡犯罪懲治等多個領域②。具體到醫療行業,2013年國家衛生計生委、國家中醫藥管理局印發的《關于加快推進人口健康信息化建設的指導意見》,2015年國務院辦公廳印發的《全國醫療衛生服務體系規劃綱要(2015-2020年)》,2017年工信部、民政部、衛計委聯合印發的《智慧健康養老產業發展行動計劃(2017-2020年)》等文件,都著重強調形成覆蓋全生命周期的智慧健康養老產業體系,打造一批智慧健康養老服務品牌。2016年12月,國務院辦公廳印發《關于全面放開養老服務市場提升養老服務質量的若干意見》提出推進“互聯網+”養老服務創新,到2020年養老服務市場全面放開等,都指出實現全員人口信息、電子健康檔案和電子病歷三大數據庫要基本覆蓋全國人口并完成信息動態更新。這些直接或間接性文件的不斷完善,為人工智能在健康領域的應用提供了基本的制度框架。

最后,在技術與政策環境的激勵下,人工智能在老年健康管理中的應用初見成效。從易得的傳感器,到智能化的可穿戴設備,智能護理床、健康服務機器人、陪護機器人等服務機器人,越來越多智能設備參與到老年人健康管理領域。近幾年,房地產商、保險公司、養老機構積極推出高端養老項目,健康服務機器人也隨即而來,其中天津哈士奇機器人作為全球首臺健康服務機器人成為標志性事件。而后,機器人也開始應用在福利中心和養老機構,僅杭州就有70家養老機構和40家照料中心引進了“阿鐵”養老機器人①②,機器人具備健康檢測、健康顧問、緊急報警與陪伴逗樂四項主要功能。同時依托“互聯網+”搭起智能居家養老服務的橋梁,一是通過智能健康腕表隨時測量血壓、心率等生命體征數據。相關研究表明可穿戴智能設備在治療慢性病方面有顯著效果,治療費用、住院時間等都有所降低③④。二是“開心”等智能健康養老機器人通過人體感應、攝像頭遠程監護、聲源定位、語音識別等系統為居家老人提供安全監護、用藥提醒、數據分析等健康服務,約87%的受訪者表示類似于“開心”的智能健康養老機器人會對空巢老人有用⑤。三是通過“互聯網+”和遠程醫療、遠程手術等滿足老年人的醫療需求,通過機械骨骼、輪椅機器人等助力老人康復⑥。從監護到治療,人工智能在各種養老模式的老年人中的初步試水,為應對人口老齡化提供了戰略性思維。

(二)人工智能時代老年健康管理的難題

人工智能為老年人實現全過程健康管理提供了條件,推動了老年健康管理模式的突破與創新,然而目前人工智能在老年健康管理中的應用僅處于起步階段,尚有很多問題需要解決。

其一,從應用范圍來看,價格壁壘難以突破,老年健康管理中人工智能缺乏動力。醫療行業本身就極具復雜性和特殊性,醫療體制改革和醫養結合養老模式發展已推行多年,但仍有很多問題為人們所詬病。人大代表羅衛紅曾提出目前醫養結合雖初具成效,但仍存在醫養結合服務需求與承載力不對稱、行業管理體制不完善、醫養結合醫保支付政策難以保障護理需求等問題。人工智能嵌入老年健康管理為醫養結合模式的發展創造機遇的同時,也提出了更高的要求。人工智能設備造成的健康管理服務費用誰來支付、怎樣支付,目前國內尚未達成共識,這也解釋了為什么目前智能健康機器人多出現在養老機構,而非居家老人家中。不可否認,在當前醫療衛生服務供給不足的情況下,醫養結合型養老機構非常重要,機器人的引入對老年人尤其是對高齡老人、半失能老人與失能老人帶來了極大的便利。然而無論是9064模式還是9073模式,絕大多數老年人是居家養老。針對居家生活老年人的健康監測、預防、治療、康復、護理和心理慰藉等服務需求亟需人工智能的嵌入,然而形勢不容樂觀,一方面是因為智能裝備價格較高,老年人個體往往無意愿或無力購買較為昂貴的智能感應設備,另一方面是因為擔心后續健康服務能否持續跟進,比如一個智能腕表就價值幾千元,如果后期的服務沒跟上,老年人損失就會很大。人工智能的應用必須考慮各方支付意愿,其價格在某種程度上決定了其可推廣的范圍。如何圍繞大健康戰略來定位發展人工智能,實現醫療健康服務利益相關者的協作,為老年人提供全方位全周期的健康服務是亟須解決的關鍵問題之一。

其二,從信息化建設來看,人工智能應用于老年健康管理的信息孤島劣勢明顯。人工智能的應用離不開信息技術的支撐。推進醫療服務大數據建設,建設老年群體數據庫與醫療服務信息平臺,統一相關數據標準是基礎?!叭斯ぶ悄?醫療”最大的問題在于數據的來源和質量,因為我國的醫療數據在醫院與醫院間、醫院與家庭間存在信息孤島,即使在同一個醫院提取和利用數據仍涉及很多操作手續。與此同時,雖然各地政府一直在強調健康養老服務信息平臺建設,但進程并不樂觀,多數老年健康服務僅停留在通過社區門診或體檢獲得數據,共享在街道一級,實現市級統一平臺建設的省份屈指可數。除了技術條件的制約,更多的是缺乏全局的考慮與統籌規劃,民政部門、統計部門、公安部門、衛生部門、醫院等多部門之間的責任模糊,各涉老部門缺乏溝通與配合;各地區各自為政,缺乏共享理念和共享動力,有效的溝通不足,相互之間在操作系統、網絡協議、語義表示、數據庫類型,乃至硬件管理平臺上存在差異,醫療信息數據不能有效實現地區共享,阻礙了人工智能賴以為生的數據信息資源的有效流通,既造成了數據信息資源重復建設,也限制了數據信息資源功能的最大發揮??梢?,要想人工智能應用于老年健康管理,積極突破數據壁壘勢在必行。

其三,從健康服務相關主體來看,養老機構、社區服務中心、醫療機構與企業的合作不足。養老服務機構、醫療機構等服務機構本身不生產人工智能設備,而是通過引進人工智能設備服務于老年人,科技企業才是人工智能產品的生產者。服務機構最了解老年健康管理全過程需要什么樣的人工智能產品,而科技企業則在技術上獨占優勢。二者通過跨界合作發揮各自的優勢,才能明確研發內容,最大程度縮短研發周期,以滿足老年人健康管理的需要。然而目前國內各級醫療機構、養老服務機構在該領域的開拓相對滯后,除了發達城市的大型房地產公司通過與科技公司合作建設高端養老基地,應用人工智能參與老年健康管理服務,實現了企業間的人工智能合作外,多數醫療機構、養老服務機構有待進一步跟進。與此同時,醫療機構、養老服務機構提升自身對人工智能產品的駕馭能力也離不開同科技企業的有效合作。兩者有效合作的缺乏在一定程度上制約了老年健康管理過程中的人工智能創新能力的提升。兩者如何建立合作機制,共同推進人工智能的技術創新與應用是人們不得不思考的當務之急。

其四,從研發主體看,老年健康管理領域的人工智能發展受制于稀缺的專業人才。人工智能任何相關技術方面的突破都依賴于人才,可以說其發展能力取決于人才數量。《全球人工智能人才白皮書》顯示全球AI領域的人才缺口達到百萬量級,2017年工信部發言人指出在我國人工智能人才缺口超過500萬,稀缺的專業人才資源是制約全球人工智能技術發展和應用落地的一大短板。人工智能的專業人才既要掌握數據挖掘、語音圖像識別等計算機層面知識,又要了解人工智能應用領域的客觀狀況。AlphaGo之所以能戰勝人類圍棋世界冠軍,在一定程度上是因為其設計者DemisHassabis本人就是天才棋手①。因此,人工智能老年健康領域的專業人才需要集計算機專業技術與健康養老服務行業實踐于一身,才能研發出適合老年群體的智能健康醫療設備。目前國內的人工智能專業性人才缺乏,且多集中于制造業、互聯網等領域的技術開發工作,雖然一些科技公司與醫療機構合作取得初步的成果,但在醫療領域結合上缺乏深度,直接針對健康服務領域的人工智能人才更是不足,阻礙了老年健康領域人工智能技術的推行。

三、未來選擇:人工智能時代老年健康管理的關鍵路徑

人工智能時代的到來,為老年健康管理創造了全新的環境,同時也對政府、社區、醫療機構、養老服務機構等提出了更高的要求。面對人工智能的迅速發展,需積極推進人工智能與老年健康管理的深度融合,以促進適應時代訴求的老年健康管理智能化。

(一)構建人工智能嵌入老年健康管理的管理機制

DouglassC.North指出制度是社會的游戲規則,規定了人與人之間的行為范式②。人工智能時代老年健康管理迫切需要現有機制的突破與創新,當前必須做好三個層面的具體工作。

一是形成專業的領導機制。人工智能科學嵌入老年健康管理離不開政府部門的統一規劃和部署。2018年國家醫療保障局成立,整合了此前散落在人社、民政、衛計委、發改委等多個部門的相關醫療職能,改變了“九龍治水”的管理局面,為人工智能在醫療行業、健康領域的嵌入提供了契機。在老年健康領域推廣人工智能應納入醫療保障局的工作內容,積極推動醫療機構、養老機構、社區養老服務中心等與科技企業的合作,全方位部署人工智能在老年健康管理中的應用格局,從傳感器,到智能化的可穿戴設備,健康服務機器人、智能護理床、陪護機器人等服務機器人,從智能家居設備、養老服務機構智能設備,到智能醫療機器,從老年人健康數據建設到疾病的預防、治療、康復與護理等,培養一支兼具智能理念和實踐經驗的新型領導隊伍,確保政府部門在人工智能應用中始終掌握主動權。

二是培養多元主體信息共享機制。人工智能的發展與應用依賴于數據,因此,人工智能嵌入老年健康管理,一方面需要挖掘分析大量老年健康數據,以便人工智能設備的研發,另一方面需要醫療機構、養老機構、社區居家服務中心、老年人等相互間的數據連通與安全共享,促使多方有效參與老年健康管理。加快健康養老信息平臺建設迫在眉睫,要著力提升多元參與主體的數據素養和技術素養水平,促進多元主體相互間協同配合,協調老年健康數據在各部門間的流通,實現數據信息的交互及供需的有效匹配,從而打破數據壁壘,為提升老年健康管理水平提供數據支撐。

三是建構道德倫理矯正機制。享受人工智能給老年健康管理帶來巨大便利的同時,也必須正視其對道德倫理的挑戰。首先,進一步完善信息保護機制,減少甚至消除老年人對個人信息數據泄露的擔憂。其次,科學認識和使用人工智能。雖然現有的人工智能在某些層面和維度接近、達到甚至超過了人類智能,但其工具性色彩沒有改變,人工智能在老年健康管理中的應用旨在提高健康管理水平,而不是取代醫護人員和親朋好友。兒女的關心、好友的慰問以及老年人必要的社交互動都不可或缺。最后應通過技術發展,為人工智能注入情感,促使人機交互更加和諧。

(二)構建以人工智能為核心載體的老年健康技術系統

推進各級醫療機構和各地養老機構在老年健康管理中發揮更大的作用,需要通過智能化處理系統和便捷高效的急救處理流程,即系統能自動采集老年人身體狀況數據并進行分析,當發生意外跌倒或生命體征數據出現異常,智能呼叫相應的醫療機構,使老人及時、準確地獲取醫療服務。為此,應重點做好兩個層面的工作。

一方面,建設針對老年健康管理的智能處理系統。智能化系統基于計算機網絡技術和信息技術,強化老年健康的數據挖掘系統和數據存儲系統建設,有效整合老年健康管理智能化進程中的各類非數值型、非結構化數據,同時有針對性地引進合適的人工智能技術,如生物識別技術、自然語言處理、機器學習、虛擬等,提升人機交互過程中老年健康數據的處理效率,并以此形成由知識庫、數據庫、推理機、解釋器和知識獲取等組成的老年健康管理系統,為提高老年健康管理水平奠定基礎。

另一方面,創新以人工智能為基礎的醫療流程。智能系統的生命在于應用,老年健康管理途徑與方式的優化必須以智能處理流程的創新為依托。其一,通過人工智能實現老年人健康狀況的自動檢測,根據不間斷、全方位的健康數據跟蹤,智能評估老年人身體與心理的健康狀況,并基于數據分析提出智慧決策,確定老年人在健康方面應采取的措施。其二,智能系統要在識別老年人緊急救助需求的基礎上,主動通知醫療機構,使老年人及時得到救助。至于醫療機構的選擇應符合分級診療原則與就近原則。這對于減少老年人獨居風險,為空巢老人提供“健康保險”有積極的現實意義。

(三)構建“?!蟆t/養”在人工智能領域的深度合作機制

學校是人才培養的重要陣地,科技企業是人工智能產業發展的主力軍,而醫療服務機構與養老機構是老年健康管理的重要參與者。推進人工智能在老年健康管理領域的應用,迫切需要三者的深度協作,以達到通識成材、借勢運力、以智發展的目標。

其一,探索高校與企業協同人才培養模式。相比美國人工智能人才數量,我國明顯滯后。據領英數據顯示,我國從業經驗10年以上的AI人才占AI人才總數比例不足40%,而美國這一比例超過70%;美國人工智能基礎層、技術層和應用層的人才數量占比分別為22.7%、37.4%和39.9%,而中國為3.3%、34.9%和61.8%,人才培養勢在必行。如上文所述,人工智能的專業人才既要掌握數據挖掘、語音圖像識別等計算機層面知識,又要了解人工智能應用領域的客觀狀況。科技企業需要高校的理論與人才的支持,而高校則可借助企業的數據資源和技術平臺推進科研理論進展,將研究價值落地。因此,高校應加強人工智能相關學科建設,吸引國際頂級科學家和高層次人才,加強與科技企業、國外高校及相關機構的合作,將技術教學貫穿到實訓項目中,讓學生在校所學與企業實踐有機結合,培養貫通人工智能基礎理論、軟硬件技術與醫療服務領域應用的縱向跨界人才。人工智能校企合作將有助于人工智能在老年健康領域的加速發展,為人工智能應用打開新局面。

其二,搭建醫療服務機構與企業合作平臺。近年來,阿里巴巴、百度、騰訊和華為等國內企業在人工智能領域的崛起,為老年健康管理的轉型提供了技術支撐。人工智能本身就涉及多重技術,不同行業或領域的關鍵技術必然存在差異,加快人工智能在老年健康管理中的應用,醫療服務機構既要借助科技企業的技術優勢,引入智能技術,又要借助科技企業的智力優勢,培育服務人才。這就要求醫療機構積極通過研發外包的途徑,由科技企業打造契合老年健康管理需求的智能軟件與硬件,加快老年健康管理智能產品的開發與推廣,促進產品從監護提醒類、健康監測類,到醫療設備類、陪護聊天類,關注老年人身體健康的同時注意開發心理健康護理機器人,實現智能產品的多元化與精準化。與此同時,醫療機構通過與科技企業的合作,提高本機構內部人工智能的應用能力。

(四)構建老年健康管理人工智能產品的定價與補貼機制

人工智能在老年健康領域推行受阻的一個很重要的原因是企業囿于無利可圖與老人抱怨收費高現象并存。老年健康領域人工智能產品與服務的價格既不能完全市場化也不能嚴控低價,應建立合理的定價機制與相應的財政保障機制,以平衡市場主體盈利與老年人經濟承受力來促進人工智能在老年健康領域的廣泛應用。

一方面,合理確定老年健康領域人工智能產品的價格。老年人的健康管理產品與服務具有一定的福利性,過高的價格會忽略老年人的經濟承受能力,過低的價格又影響社會資本的收益率與參與積極性,阻礙該領域的進一步發展。根據資本資產定價模型,任何資產的期望收益率都由無風險利率和對所承擔風險的補償—風險溢價兩部分構成,考慮到服務對象的特殊性,老年健康領域人工智能產品合理的投資收益率應等于或略低于市場平均投資收益率,兼顧經濟效益與社會效益。

另一方面,建立相應的財政補貼機制。雖然老年人收入來源更加多元,自報需要照護服務的比例不斷提高,越來越多的老年人有能力購買健康管理設備,但價格仍然是影響其選擇與否的關鍵因素之一。而且受年齡、身體狀況、收入等多重因素影響,有必要分地區、分群體進行大面積的調查統計,找到不同身體狀況與經濟狀況的老年人有能力和意愿支付的平均價格。根據計算出來的市場價格與老年人可支付的價格,分類別分等級進行補貼,對于經濟困難的失能半失能老人要免費配置相應的智能設備。

此外,加強老年健康管理人工智能應用狀況的監管體系和績效評價體系。當前人工智能技術整體還處在較低的發展層次,在認知能力、感知行為、風險對抗等諸多方面仍比較笨拙,應在加強人工智能嵌入的可能性風險管理的基礎上,采取第三方評估方式,科學評價人工智能應用過程的技術適用、服務質量等環節。推進老年健康管理領域的人工智能應用的不斷改進與發展。

四、結語

人工智能在醫療方面的作用范文2

 

AI從誕生到現在已經有60年的時間,期間經歷兩輪起落,呈階梯式進化,走到今天進入第三個黃金期。如果按照其智能科技水平劃分,今天的人工智能尚處在狹義智能向廣義智能進階的階段,還是一名不折不扣的“少年”,未來擁有無限的可能和巨大的上升空間。

 

AI是一門交叉的學科:人工智能由不同的技術領域組成,如機器學習、語言識別、圖像識別、自然語言處理等。而同時,它也是一門交叉學科,屬于自然科學和社會科學的交叉,涉及到哲學和認知科學、數學、神經生理學、心理學、計算機科學、信息論、控制論、不定性論等學科。人工智能領域的技術壁壘是比較高的,并且會涉及到多學科協作的問題,對任何公司來說,想做好人工智能將是一門大工程。未來不大可能出現一個公司能包攬整個人工智能產業每一個部分的工作,更可能的模式將是一個公司專注于一個相對細分的領域,通過模塊化協作的形式實現人工智能領域的不同應用。

 

進化史呈階梯狀,以階段突破式為成長模式:人工智能的發展經歷了兩次黃金和低谷期,

 

現在正經歷著第三個黃金期。1956年,麥卡賽、明斯基、羅切斯特和申農等年輕科學家在達特茅斯一起聚會,并首次提出了“人工智能”這一術語,標志著人工智能的誕生。第二年,由 Rosenblatt 提出 Perceptron 感知機,標志著第一款神經網絡誕生。1970年,因為計算能力沒能突破完成大規模數據訓練,人工智能的第一個黃金期到此結束。

 

后直到1982年德普霍爾德神經網絡的提出,人工智能進入第二個黃金期,之后BP算法的出現使大規模神經網絡訓練成為可能,人工智能的發展又一次進入。1990年,因為人工智能計算機和DARPA沒能實現,政府撤資,人工智能又一次進入低估。2006年,隨著“深度學習”神經網絡取得突破性進展,人工智能又一次進入黃金時期。

 

AI將由狹義智能向廣義智能進化,雖然人工智能的誕生已經有60年的時間但如果把它比喻成一個人的話,當前的他應該還未成年。按照人工智能的“智能”程度,可以將其分成狹義智能、廣義智能、超級智能三個大的發展階段,現階段的圖像與語音識別水平標志著人類已經基本實現狹義智能,正在向廣義智能的階段邁進。

 

狹義智能:即當前的技術已經實現的智能水平,包括計算智能與感知智能兩個子階段,計算智能指的機器開始具備計算與傳遞信息的功能,感知智能指機器開始具備“眼睛”和“耳朵”,即具備圖像識別與語音識別的能力,并能以此為判斷采取一些行動。

 

廣義智能:指的是機器開始具備認知能力,能像人類一樣獲取信息后主動思考并主動采取行動。在這個階段,機器可以全面輔助或代替人類工作。

 

超級智能:這個階段的機器幾乎在所有領域都比人類聰明,包括科學創新、通識和社交技能等。這個階段目前離我們還比較遙遠,到時候人類的文明進步和跨越或許將有賴于機器,而機器人意識的倫理問題也許將在這個階段成為主要問題。

 

推薦引擎及協同過濾可以分析更多的數據

 

智能助手并不只局限于Siri等手機語音助手。微軟率先在win10 系統中加入個人智能助理Cortana,標志著個人PC端智能助理的出現;圖靈機器人以云服務的方式進入海爾智能家居、博世mySPIN車載系統,預示著多場景人工智能解決方案的潮流。初步實現人機交互的智能助手系統,已經被應用于智能客服、聊天機器人、家用機器人、微信管理平臺、車載系統、智能家居系統、智能手機助理等多個軟硬件領域。

 

垂直類網站及社交平臺可以借助智能助手系統打造高專業度的“在線專家”以提升平臺價值;企業可以借助以“語義識別”為基礎的智能助手系統,打造智能客服,效率遠高于傳統的以“關鍵詞對應”為技術支持的客服系統。

 

推薦引擎,是主動發現用戶當前或潛在需求,并主動推送信息給用戶的信息網絡。挖掘用戶的喜好和需求,主動向用戶推薦其感興趣或者需要的對象。傳統推薦引擎通常利用用戶在平臺上的歷史記錄進行推薦,效率低、匹配度不高。目前隨著大數據和深度學習技術的推進,推薦引擎及協同過濾可以分析更多的數據,乃至全網數據,并模擬用戶的需求,真正達到按需推薦。全球最大的正版流媒體音樂服務平臺Spotify也利用卷積神經網絡參與建設其音樂推薦引擎;谷歌也提出利用深度學習方法來學習標簽進行推薦建設。出品紙牌屋的全球最大在線影片租賃公司Netflix 也利用深度學習網絡分析客戶消費的大數據,還計劃構建一個在AWS云上的以GPU為基礎的神經網絡。

 

“餐廳推薦引擎”Nara,便是一個利用AI技術的推薦引擎。在上線之初,Nara 就取得了400萬美元的投資。Nara 的數據庫中有超過100000家餐廳的信息,并利用特有的“Nara神經網絡”,學習使用者的偏好,最終達到“電腦幫你點餐”的目的。

 

而今年3月22日,國內AI領軍企業阿里巴巴旗下的阿里云數加啟動“個性化推薦”引擎對外公測,該引擎用于幫助創業者可以快速獲得媲美淘寶天貓的個性化服務能力。阿里云數加上的推薦引擎能夠以更低的成本完成開發,節省程序量達到90%,推薦引擎的搭建時間將由幾個月縮短到幾天。

 

對于不了解算法的人,只能實現標簽規則類的推薦,但如果要做成機械化、類似協同過濾的算法,創業公司需要配置大量的算法工程師,人力成本很高。現在用了數加的推薦引擎,商家只需要做數據的ETL加工,推薦的結果集、訓練集都不用處理,只需要調整參加即可得到推薦結果。

 

AI帶給人們新的視覺???

 

醫療:為健康診斷和藥品研發插上高飛的翅膀

 

健康診斷有望迎來新紀元,海量的病歷數據和醫學界的新研究成果,單靠人工很難及時篩選并利用,而引入人工智能技術將充分發揮這些信息的價值。例如著名的個人健康管理產品公司Welltok將 IBM的Watson功能融入旗下產品 CafeWell Concierge APP中,借助 Watson 的認知計算能力理解人類語言,實現與用戶溝通的能力,從大量數據中進行分析并為用戶提供健康管理相關的答案和建議,實現健康管理、慢病恢復訓練、健康食譜等功能,這一領域的良好前景使 Wellltok公司近年的融資額連創新高。另外,2015年IBM斥資10億美元收購醫療影像與臨床系統提供商Merge,將研究如何實現 Watson的“辨讀”醫學影像功能。此外,AI 還可以從醫療中心獲得的健康數據,通過大數據分析,實現根據分析患者行為來制定個性化治療方案的功能。

 

智能家居:天花板尚遠,AI有望成為核心

 

行業天花板尚遠,增速有望保持在 50%左右, 《鋼鐵俠》中的“Jarvis”作為智能管家,除了起到鋼鐵俠的小秘書的作用,還幫主人打理著日常生活,向我們展示了一個理想中的智能家居系統。雖然我們目前可能離那個無所不能的智能管家還很遙遠,但智能家居對我們生活的變革確實已經開始了。根據《2012-2020 年中國智能家居市場發展趨勢及投資機會分析報告》的預測,我國智能家居市場在 2016年將達到605.7億的規模,同比增長50.15%,到2020年市場規模將達到3294億,年均增速將保持在50%左右,具備充足的向上延伸空間。而智能家居想達到“Jarvis”般的終極效果,必然需要引入AI技術,實現家居的感應式控制甚至自我學習能力。

 

AI有望成為智能家居的核心,實現家居自我學習與控制。按照智能家居的發展進度,大致可以分為四個階段:手機控制、多控制結合、感應式控制、系統自我學習。當前的發展水平還處在手機控制向多控制結合的過度階段。而從多控制結合向感應式控制甚至自我學習階段進化時,AI將發揮主要功能。到今天為止,家居的實體功能已經較為全面,未來的發展重點可能在于如何使之升級改造,實現家居的自我行為及協作,因此未來AI在智能家居領域的應用有望成為其核心價值。AI對智能家居的重構可以深入到方方面面,包括:控制主機、照明系統、影音系統、環境監控、防盜監控、門窗控制、能源管理、空調系統、花草澆灌、寵物看管等等。

 

無人駕駛:政策漸萌芽,AI決定可靠性

 

優點多、動機足、政策漸萌芽。據麥肯錫的調查顯示,如果能解放駕駛員的雙手,一輛無人駕駛汽車內的乘客通過移動互聯網使用數字媒體服務的時間多一分鐘,每年全球數字媒體業務產生的利潤將增加 50億歐元。此外,由于自動泊車無須為乘客下車預留開門空間,使得停車位空間可縮減至少15%。

 

如果無人駕駛汽車以及ADAS系統能夠將事故發生率降低90%,即可挽回全美每年的損失約1千900億美金??梢哉f諸多的優點使得無人駕駛技術的研發動機還是相當充分的,因此未來無人駕駛推行的力度應該還會保持在一個比較高的水平。美國勒克斯研究公司曾預計無人駕駛汽車的市場規模在2030年將達到870億美元。

 

到目前為止,各國政府對于無人駕駛技術在政策上的支持正逐步放開,美國政府在年初剛剛宣布了40億美元的資助計劃;英國目前已經不需要獲得額外批準和履約保證即可進行實際道路的無人駕駛汽車測試;而德國也在去年宣布將計劃設立無人駕駛汽車測試路段,供安裝有駕駛輔助系統或全自動駕駛系統車輛行駛;歐盟總部正在就如何修改現行有關駕駛的法律法規從而支持自動駕駛的發展展開討論和研究工作;日本也提出要在2020年之前實現自動駕駛汽車方面的立法,并將自動駕駛作為 2016年9月七國集團交通部長會議的議題。

 

“無人汽車大腦”AI的智能程度決定了無人駕駛的可靠性。由于無人駕駛完全交由汽車的內置程序負責,因此AI就是無人汽車的大腦,而測距儀、雷達、傳感器、GPS等。設備都是AI的“眼睛”。AI的智能程度直接決定了無人駕駛汽車在不同的路況、不同的天氣、甚至一些探測設備出現故障的突況下能否及時做出正確的判斷并靈活調整行駛策略,最終決定了無人駕駛汽車當前最亟待突破的可靠性。

 

NVIDIA 在2016年的 CES大會上了“Drive PX 2”車載計算機,以及一套與之搭配的具有學習功能的自動駕駛系統。該系統的亮點在于“自我學習”,通過讓車輛自行分析路面狀況,而不是在數據庫中尋找預先儲存的策略實現自動駕駛,系統背后連接著名為NVIDIA DIGITS的深度學習訓練平臺,最終連接到NVIDIA DRIVENET神經網絡,為車輛的自我學習和完善提供支持。并且由于它是通過判斷物體的行進軌跡而不是物體本身去計算路徑,因此在駕駛時受天氣影響較小。

 

AI 成必爭之地

 

目前全球AI主戰場依舊在歐美。Venture Scanner的統計顯示,根據從事 AI相關業務的公司數量來看,目前全球 AI的主戰場還是集中在北美和西歐地區。美國數量最多,達到450家左右的水平。而中國從事相關業務的公司數量還比較少,和俄羅斯、澳洲、部分歐洲國家及非洲南部國家水平接近,相比起歐美國家的AI公司數量,還有很大的提高空間。

 

Google:投資未來的人工智能帝國

 

建立Alphabet帝國,具備品牌背書效應。2015年,谷歌成立母公司 Alphabet, 搜索、廣告、地圖、App、Youtube、安卓以及與之相關的技術基礎部門”仍屬于谷歌,而Calico、Nest、Google Fiber、Google Venture、Google Capital 及 Google X 都將獨立出來,成為 Alphabet 旗下的獨立公司。通過建立 Alphabet集團,谷歌將不同業務的研發獨立出來,以子公司的形式進行業務開展,保留在Google這個品牌下的基本都是原有的傳統強勢業務。

 

而其它公司負責在各自的領域“打頭陣”,一旦業務研發成功,母公司連帶著google這個品牌都可以受益,而如果研發失敗,也不會公司的品牌造成多大的不良影響,建立了良好的品牌背書效應。將機器學習技術應用到所有產品之中,我們不難發現,谷歌近年幾乎將人工智能滲透到了旗下的各類產品中,可謂是全線鋪開。正應了谷歌 CEO的那句話:“我們將小心謹慎地將機器學習技術應用到我們所有的產品之中?!备鶕斍癆lphabet 的集團架構,我們將涉及到AI應用的子公司情況以及相應的業務開展情況羅列如下:

 

Nest:從事智能家居生態系統建設。2014 年谷歌以32億美元收購 Nest。Nest 生產智能恒溫器,它能夠學習用戶的行為習慣,并且根據他們的喜好去調節溫度。同時,Nest 也提供火警探測器和家庭安全攝像頭等智能家居。

 

Google X:谷歌各類創新技術的“孵化池”。Google X開展的與AI有關的項目有:無人駕駛汽車、Project Wing 無人機送貨項目、對抗帕金森氏癥的 Liftware“反抖”湯匙、用于疾病預警和健康監控的可穿戴設備、Project Titan 太陽能無人機項目、以及 Replicant 團隊負責的機器人項目等。

 

Verily:從事生命科學業務,即原來的 Google Life Science。代表產品有可以收集佩戴者體溫和血液酒精含量等生物數據的智能隱形眼鏡,以及監控血液中納米粒子的智能腕表。

 

DeepMind:深度學習算法公司。2014年谷歌以4億美元收購了DeepMind。

 

DeepMind的算法源于兩種機器學習方法的結合:第一種是深度學習,是受人腦啟發的一種結構。深度學習系統能夠從大量的非結構數據中獲取復雜信息。第二種是增強學習,靈感源自動物大腦中的神經遞質多巴胺獎勵系統,算法不斷通過試錯來進行學習。目前,DeepMind在深度學習上面的研究成果已經開始用在谷歌的機器人項目中。

人工智能在醫療方面的作用范文3

關鍵詞:數據挖掘;醫學數據;神經網絡;關聯規則

中圖分類號:TP274文獻標識碼:A文章編號:1009-3044(2011)15-3495-03

Summary of Medical Data Mining

WANG Ju-qin

(Department of Computer Technology, Wuxi Institute of Technology, Wuxi 214121, China)

Abstract: Medical data mining is necessary for improving the management level of medical information, providing scientific decision-making for the diagnosis and treatment of disease, and promoting the development of medicine. This paper mainly introduces the characters of mining medical data, the application and methods used in medicine, and also the application prospect medical field is outlined.

Key words: data mining; medical data; neural network; association rules

1 數據挖掘的產生

1.1 產生背景

在當今信息化和網絡化的社會條件下,隨著計算機、數據庫技術的迅速發展以及數據庫管理系統的廣泛應用,各行各業都開始采用計算機以及相應的信息技術進行管理和運營,由此積累了大量的數據資料;另外,互聯網的發展更是為我們帶來了海量的數據和信息。但是,這些存儲在各種數據媒介中的數據在缺乏強有力的工具的情況下,已經超出了人的理解和概括能力,導致收集在大型數據庫中的數據變成了“數據墳墓”,并帶來了一大堆問題:比如信息過量,難以消化;信息真假難以辨識;信息安全難以保證;信息形式不一致,難以統一處理,等等[1]。而激增的數據背后隱藏著許多重要的信息,決策者的決定往往不是基于數據庫中的有用信息,而是憑直覺,因為決策者缺乏從海量數據中提取有價值知識的工具。數據和所需信息之間的鴻溝要求系統地開發數據挖掘工具,將數據墳墓轉化成知識的“金塊”,人們迫切需要新一代的計算技術和工具來挖掘數據堆中的有用信息。

1.2 可行性

近十余年來,計算機和信息技術有了長足發展,產生了許多新概念和新技術,如更高性能的計算機和操作系統,因特網,數據倉庫,神經網絡等等。這使得數據挖掘技術在具備了市場需求的條件下,同時也具備了技術基礎。在這樣的背景下,數據挖掘技術就應運而生了。

2 醫學數據概述

2.1 醫學數據的內容

計算機信息管理系統在醫療機構的廣泛應用促進了醫學信息的數字化, 同時電子病歷和病案的大量應用、醫療設備和儀器的數字化,使得醫學領域數據的內容不斷擴大,涵蓋了醫療過程和醫學活動的全部數據資源。醫學數據資料主要來源于統計報表、醫療衛生工作記錄、專題實驗或者調查記錄、專題性的資料等三個方面[2],其中主要包括完整的人類遺傳密碼信息,大量關于病人的病史、診斷、檢驗和治療的臨床信息,藥品管理信息、醫院管理信息等。

2.2 醫學數據的特點

1)模式的多態性。首先表現為表達格式的多樣性。醫學信息包括純數據(體征參數,化驗結果),信號(腦電信號,機電信號),圖像(B超,CT等醫學成像設備的檢驗結果),文字(病人的身份記錄,癥狀描述),以及動畫、語音和視頻信息。其次,數據表達很難標準化,對各種病例狀態的描述也比較模糊,沒有統一的標準和要求,不使用完全相同的專有名詞,甚至對臨床數據的解釋都是用非結構化的語言,等等[3]。模式多態性是醫學數據區別于其他領域數據的最根本和最顯著的特性,同時這種特性也在一定程度上加大了數據挖掘的難度和速度。

2)不完整性。醫學數據不可能全面地反映任何一種疾病的全部信息,因此也不可能通過挖掘,針對某一種疾病獲取完整可靠的治療和解決方案。這首先是因為醫學數據相關信息(例如病例等)的記錄存儲還不是很完備和充分,還不能夠達到完全總結出待挖掘規律的數量[3]。同時,即使記錄在案的信息,其本身的表達方式就比較模糊,不可能通過精確值等方法來呈現,因此這些原因形成了醫學數據的不完整性。

3)時間性[3]。一般情況下針對病人醫療活動的記錄信息都具有一定的時間特性,并且會隨著時序環境的變化而產生不同的表達效果;另外諸如醫學檢測的波形圖像等信息也都是以時間函數為基礎進行表達的。

4)冗余性。醫學數據信息中有大量的相同部分被重復記錄下來,比說一些常見疾病,病人的癥狀表現一般都比較相似,檢查和化驗的結果以及最后的治療措施等絕大部分也因此而相同。因此即使病人的個人信息等存在較小差異,其記錄的大部分醫學數據都表現為完全相同或者大部分相同,這就體現為冗余性[3]。這種數據特點不但迅速增加了此類數據本身的數量,同時也給挖掘操作帶來了更大的困難,應該在此之前就對這些冗余信息進行清理和過濾,去除不必要的重復部分,以簡化挖掘操作的實現過程。

5)隱私性[8]。顯然,記錄的醫學信息中,許多有關病人個體的信息涉及到社會倫理,法律以及個人所有權等,具有一定的隱私性,從社會,醫學以及病人本身等方面來說都必須進行保護,不能外泄。但是當數據存儲系統受到一些不可預料的侵入時,或者當其隱私保護的要求和挖掘操作的開放共享要求等產生矛盾時,勢必會帶來隱私性、安全性和機密性方面的問題。這就要求在進行醫學數據挖掘時,必須嚴格以保護數據隱私為基礎,

2.3 醫學數據挖掘的可行性和必要性

2.3.1 必要性

眾所周知,龐大的醫學數據中蘊含著許多非常有價值的信息資源,這些資源對于相關病例的診斷治療以及醫學方面的研究發展都具有非常重要的意義。但是從目前的狀況來看,大多數醫學機構和人員對這些存儲數據的利用還遠遠沒有達到預期的目標和效果,僅局限于一些低端的操作和使用,比如簡單的數據錄入,數據的查詢、修改、刪除等,而并沒有對收集的數據進行系統的分析研究,以從中得出適用于一般的規律特點,所以無法對相關病例的后繼診斷提供科學的決策輔助,對醫學學科的研究工作也沒有起到相應的促進作用[4]。針對這些情況,在數據挖掘技術已經日漸成熟的背景下,將數據挖掘理論應用于醫學,通過對海量的醫學數據進行分析,總結各種醫治方案的療效,提取隱含在其中的有價值有意義的信息,更好地為醫院的決策管理、醫療、科研和教學服務,對于醫生明確診斷、治療病人及促進疾病和健康的研究都具有極其重要的意義。

另一方面, 隨著人們生活水平的提高,保健意識的增強以及我國醫療體制改革的深入,基于計算機技術、通信技術的遠程醫療和社區醫療,已經逐漸成為各大醫院的另一個潛在市場。如何對醫學數據庫進行自動提升和處理, 使其更好地為遠程醫療和社區醫療提供全面的、準確的診斷決策和保健措施,已成為促進醫院發展、提高服務質量而必須解決的新問題。而這顯然也是和數據挖掘技術有著密不可分的聯系。

2.3.2 可行性

數據挖掘技術在經過多年的發展之后已經形成相對成熟的技術體系,比如在數據挖掘設計、數據抽取以及聯機分析處理技術等方面都有一定的進展[4]。同時,數據挖掘技術已經在各個國家的電信、制造、零售、金融等各個領域得到了較為深入的應用。這些成功的應用也提供了可借鑒的寶貴經驗。

同時國家對醫院信息化發展也給予了高度重視,提供政策、經濟和技術上的大力支持,為醫學數據挖掘技術的發展應用奠定了物質基礎和技術保障。

3 醫學數據挖掘的發展狀況

3.1 發展現狀

自20世紀80年代開始至今,數據挖掘技術產生至今有十幾年的時間,在商業以及工業生產中已經得到了較為廣泛的應用,也取得了比較顯著的經濟效益和社會效益,但是數據挖掘技術在醫學領域的應用還處在起步階段[5]。同時,醫學數據挖掘也是一門涉及面廣、技術難度大的新興交叉學科,不但需要具有相關信息處理能力的技術科研人員,還需要相關的醫務工作者和醫療機構提供醫學數據信息和專業醫療活動支持,并且要在此基礎之上實現醫學信息資源和挖掘技術的整合,實現技術上的突破。

3.2 應用領域

1)醫療活動輔助診斷。通過對歷史數據的處理和挖掘,能夠發現出針對特定病例的典型規律。一方面數據量內容龐大,范圍廣泛,所以這些規律具有較好的普遍性;另一方面,根據患者全面的指標記錄和數據信息可以得到比較客觀的診斷結論,排除了人為因素的干擾,能夠更加有利于提高醫學治療活動的有效性。比如將粗糙集理論和算法應用于中醫類風濕和實體性肺病的診斷,基于人工神經網絡理論以及模糊邏輯開發的心血管疾病診斷工具[6],都大大提高了診斷的正確率。

2)醫學信息處理。醫院信息主要包括醫院等醫療機構的內部管理信息(設備,藥械,財務)以及以患者為中心的信息(臨床病例、診斷、治療過程)。在初級操作階段的基礎上,通過對信息的數據關聯性分析,能夠預測未來發生發展趨勢和輔助診斷信息,比如藥品的使用頻率,某種疾病的發生和治療規律等。例如應用粗糙集理論預測早產,可以將準確率從人工預測的17~38%提高到68~90%[6]。

3)醫療質量管理。醫療機構的服務要求在不斷提高,質量效率問題也越來越被重視。醫療質量的核心是數據、標準、計劃,這些都可以用不同的數據指標來衡量。通過數據挖掘技術,可以發現新的指數規律,檢驗其有效性,并提煉調整質量方案。例如年齡因素和治療方法的關系延長了標準住院時間,可以考慮修改治療方案等??梢院苊黠@地發現,數據挖掘技術可以幫助發現有關提高臨床服務效率以及質量潛力的證據。

4)醫藥研發技術支持。在新藥的研究開發過程中,關鍵環節是先導化合物的發掘,其中一種基本途徑就是隨機篩選與意外發現。但是很顯然這種技術實現的周期比較漫長,肯定提高時間成本和經濟成本。而在數據挖掘技術的支持下,可以通過數據信息的歸納總結,確定藥效信息,大大縮短新藥的研發周期[6]。

5)生物醫學(DNA)。人類24對染色體的基因測序已經全部完成,標志著人類基因研究已經進入新的發展階段。接下來要完成的重要任務就是對分析DNA序列模式。比如,遺傳疾病的發生和人體基因密不可分,要掌握基因代碼的微觀結構,就需要對DN段進行細致的了解和測序,也就是要從大量的DNA數據中找到具有一般規律的組合序列。目前,使用數據挖掘技術已經在很多方面對DNA的分析作出了很多貢獻,例如,DNA序列間相似搜索和頻度統計,可以識別帶病樣本和健康樣本中基因序列的差異[6];關聯分析可以幫助確定在樣本中同時出現的基因種類,有利于更全面地發現基因間的交叉聯系和致病規律;路徑分析能夠發現不同階段致病基因的作用規律,從而提高藥物治療的效率。

6)醫學圖像應用。主要應用于目組織的特征表達,即圖像特征自動提取和模式識別。例如,CT,PET,SPECT等診斷工具在醫學領域應用越來越廣泛,而在數據挖掘技術的幫助下,醫學圖像分析的功能也越來越強大[6]。運用基于貝葉斯分類的數據挖掘模式對心肌SPECT圖像能夠進行高質量的分析和分類診斷。

7)其他方面的應用。數據挖掘還應用于毒理學方面以及藥物副作用研究方面。

4 醫學數據挖掘的方法技術

4.1 關鍵問題

1)數據預處理。如前所述,海量的醫學原始數據中包含大量的冗余、模糊以及不完整信息,必須首先進習慣清理和過濾,以確保數據的一致性和完整性。

2)信息融合技術。因為醫學信息的格式繁多,包括文字,數據,圖像,語音,視頻等等,因此需要針對不同類型的信息采用不用的處理技術,并且在需要的時候可以對結果進行綜合和分析。

3)快速的、魯棒的挖掘算法[7]。醫學數據的挖掘面向海量的存儲信息,處理的時間和技術要求都比較高,因此如何提高效率非常重要。同時基于數據類型動態變化,要求挖掘算法具有一定的容錯性和魯棒性。

4)提供知識的準確性和可靠性。在保證挖掘算法的處理結果具有較高準確率和可靠性的前提下,所得到的信息才能夠為醫療活動和管理提供科學客觀的決策幫助,在實際中得到很好的應用。

4.2 主要技術實現

1)自動疾病預測趨勢和行為。通過數據挖掘技術,對有關人體病例的體征數據進行分析對比,并從中分析出相應的關系和規律,從而對疾病的預防、發生等進行預測。采用的主要技術有線性、非線性和廣義的回歸模型,以及神經網絡和模糊控制技術[8]。其中,人工神經網絡技術是一種模仿生物神經網絡的、以人工神經元為基本運算單位的互聯分布式存儲信息的智能信息處理系統,具有很強的自組織性、魯棒性和容錯性。利用相關理論技術,能夠找出服用抗精神藥物與心肌炎發作的關系,對危及生命的心律失常進行歸類,動態檢測病人的麻醉深度和控制劑用量等;而模糊系統是建立在模糊數學基礎上的一種推理方式,經常與神經網絡或最近鄰技術聯合起來應用,可以實現從心跳中鑒別心室過早收縮,分析肝臟超聲圖像等功能。

2)關聯分析。簡單地說,關鍵就是兩個或者多個變量的取值之間存在的某種規律性。關聯技術的目的是通過多維數據分析技術找出其中隱藏的關聯規則。有時并不知道或者不確定數據中的關聯函數,因此關聯分析生成的規則帶有可信度[8]。最著名的APRIORI關聯規則發現算法中,首先就是識別所有的頻繁項目集,也就是不低于用戶最低支持度的項目集,然后再從頻繁集中構造不低于用戶最低信任度的規則。在此基礎之上,又出現了動態項目集技術DIC算法,發現頻繁項目集的劃分算法―分治法等。在實際情況下,關聯規則還需要進一步泛化,以發現更有用的價值。目前在醫學上,關聯分析是糖尿病數據庫分析課題中應用最廣泛和有效的工具。

3)聚類分析。把數據庫中中的記錄劃分為一系列有意義的子集成為聚類,包括統計方法,機器學習方法,神經網絡方法,面向數據庫的方法,對于采集到的醫學信息進行處理的一個重要步驟就是聚類分析。聚類技術主要包括傳統的模式識別方法和數學分類學,例如決策樹歸納,貝葉斯分類,神經網絡技術,基于知識的案例推理,遺傳算法,粗糙集等[8]。其中,粗糙集理論的出發點是根據目前已有的對給定問題的知識將問題的論域進行劃分,然后對劃分的每一組成部分確定其對某一概念的支持程度,用“肯定支持此概念”,“肯定不支持此概念”,“可能支持此概念”進行描述,并表示為正域、負域和邊界三個近似集合,同時用二維的決策表來描述論域中的對象。目前在中醫類風濕證候的診斷、肺部良性和惡性腫瘤診斷等領域發揮了重大作用,被認為可能是最理想的動態工具。

4)偏差檢錯與控制。數據庫中的數據存在一些異常記錄,需要我們將其檢測出來。偏差包括很多潛在的知識,例如分類中的反常實例,不滿足規則的特例,觀測結果與模型預測值的偏差,量值歲時間的變化等。偏差檢測的基本方法是,尋找觀測結果與參照值之間有意義的差別[8]。目前在人工輔助儀器研究和藥物療效的生理實驗研究方面都有相關研究報道。

5)進化計算。進化計算法是由生物進化規律而演化出的一種搜索和優化的計算方法,包括遺傳算法,進化規劃,計劃策略和遺傳編程[8]。可以通過從任意一個 出示的群體出發,通過隨機選擇、交叉和變異等過程,使群體進化到搜索空間中越來越好的區域。

4.3 醫學數據挖掘過程

因為醫學數據挖掘和普通的數據挖掘之間差異較大,所以其過程是很難定義的。一些研究者定義了一系列的步驟,從而為此提供了一個框架,目的在于為各種數據挖掘方法在不同領域的應用提供指導,這些框架可能在步驟上略有不同,但同樣適用于醫學數據挖掘。一般都涉及下列6個應用領域[9]:

1)理解數據。初步理解需要挖掘的數據屬性,從原始數據庫中小規模采樣,進行初步挖掘實驗,將結果與挖掘目標進行對照,必要時更新數據屬性。

2)準備數據。由于醫學數據的冗余性和多樣性,使得我們需要對數據進行采樣以消減數據量,同時要針對各種類型的數據采取相應的數據預處理方法。通過數據的準備,可以將原始數據轉換為特定數據挖掘方法所需要的數據形式。

3)數據挖掘。這一步包括建模技術的選擇,訓練與檢測程序的確定,模型的建立與評估。實現的方法包括前面講到過的粗糙集理論,神經網絡,進化計算,決策樹等。挖掘方法與研究目標的匹配程度很大程度上決定了挖掘結果的精確度。

4)評估知識。對挖掘結論進行醫學解釋,并再次同最初目標進行比對。如果需要,尋找挖掘過程中存在的錯誤和不合理步驟并加以解決,或者對挖掘算法進行優化,提高運行效率。

5)應用知識。在應用的過程中要注意有計劃地實施和控制,及時發現應用過程中的問題,并對實際情況進行階段性的總結分析,使得挖掘成果能夠更加完善。

5 醫學數據挖掘的發展展望

醫學數據挖掘是計算機技術、人工智能、統計學等和現代醫學信息資源相結合的一門交叉學科,涉及面廣,技術難度大。隨著數據庫、人工智能等數據挖掘工具的不斷進步,關聯規則等理論研究德不斷發展,以及大型數據庫和網絡技術的普及應用,必然還會有更加多的各種格式的醫學數據出現。同時,醫學數據庫包括電子病歷、醫學影像、病理參數、化驗結果等,而目前數據挖掘技術主要應用于以結構化數據為主的關系數據庫、事務數據庫和數據倉庫,對復雜類型數據的挖掘尚處在起步階段[9]。這些情況說明了醫學數據挖掘技術的發展,充滿著機遇和挑戰,需要廣大計算機、信息技術人員和醫務工作者通力合作,結合醫學信息自身具有的特殊性和復雜性,選擇適合醫學數據類型的數據挖掘工具,并解決好數據挖掘過程中的關鍵技術,盡可能大的發揮數據挖掘技術在醫學信息獲取中的價值。更好的服務于醫學、受惠于患者。隨著理論研究的深入和今年亦不的實踐摸索,數據挖掘技術在疾病的診斷和治療、醫學科研與教學以及醫院的管理等方面必將會發揮越來越大的作用。

參考文獻:

[1] Krzysztof J Cios,William Moore.Uniqueness of medical data mining[J].Artifical Intelligence in Medicine,2002,26(1-2):1-24.

[2] Ganzert S,Gytmann J,Kersting K,et al.Analysis of respiratory pressure-volume curves in intensive care medicine using inductive machine learning[J].Artif Intell Med,2002,26(1-2):69-86.

[3] Tourassi G D,Floyd C E,Sostman H D,et al.Acute Pulmonary Embolism:Artificial Neural Network Approach for Diagnosis[J].Radiology,1993,189(2):555-558.

[4] Kusiak A,Kernstine K H,Kern J A,et al.Data Mining:Medical and Engineering Case Studies[A].Proceedings of the IIE Research 2000 Conference,Cleveland,OH,2000(5):1-7.

[5] Wolf Stugliger.Intelligent Data Mining for Medical Quality Management[EB/OL].ifs.tywien.at/~silvia/idamap-2000.

[6] Wang ML,Wai L,Leung K S.Discovery knowledge from medical database using evolutjionary algorithms[J].IEEE Eng Med Biol Mag,2000,19(4):45.

[7] Ohrn A,Rowland T.Rough sets:a knowledge discobery technique for multifactorial medical outcomes[J].Am J Phys Med Tehabil,2000,79(1):100.

亚洲精品一二三区-久久