前言:中文期刊網精心挑選了人工智能課程教學范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。
人工智能課程教學范文1
關鍵詞:人工智能;研究生教學;教學方法
人工智能是一門研究機器智能的學科,是在研究人類智能行為規律的基礎上,利用人工的方法和技術,研制智能機器或智能系統來模仿、延伸和擴展人的智能,實現智能行為。在知識經濟向智能經濟高度發展的今天,人工智能具有重要的理論意義和社會價值。人工智能理論已經滲透到各個領域,人工智能技術也得到廣泛應用,許多研究成果已經進入人們的生活。
人工智能課程是一門多學科交叉的課程,具有很強前沿性,涉及哲學、認知科學、行為科學、腦科學、生理學、心理學、語言學、邏輯學、物理學、數學等眾多領域;涉及面寬,內容廣泛,更新快。人工智能課程的開設能夠更好地培養學生的創新思維和技術創新能力,培養學生對計算機前沿技術的前瞻性,提高他們的科技素質和學術水平[1]。
人工智能課程內容的廣泛性、前沿性和應用性特點決定了授課方法的多樣性。與本科生相比,研究生在教育目標和身心特征方面都有較大的區別。筆者多年從事研究生人工智能課程教學工作,現總結多年教學經驗如下。
1研究生培養目標及其教學特點
研究生教育階段的教育目標是使研究生形成具有個性化的研究品格、研究定向和研究視野,以具有獨立思考并獲得獨創研究成果的能力[2]。從這一意義上講,個性化是研究生教育培養目標的構成主體。尤其隨著我國經濟持續高速增長,社會對知識創新、新經濟生長點的期望值增大,這就要求我國研究生教育在其培養目標的定位上不僅要重視人才培養的高層次性,更要重視創新能力、實踐能力和創業精神的培養。并且,研究生身心發展已較成熟,具有較穩定的個性特征,思維力強,具有較高的專業性思維意識和創造力,為獨立地進行專業研究活動提供了心理上和智力上的保證。而且,研究生已具備了基礎理論和專業知識,特別是有一定工作經歷的研究生,他們不僅有本科教育階段的知識積累,也有應用這些知識的經驗,對于擴大其專業知識領域并進行研究有著積極主動的態度??傊?,從年齡構成及身心特征上講,研究生適應高層次、跨學科知識領域的學習和研究。
研究生的特征及其教育目標決定了研究生教學不應該是由教師講授已定論的知識,而應是以教學為基本依托,通過教學提出具有研究性、探索性、未確定性甚至是尚存爭議性的課題,激勵研究生獨立思考和質疑,讓他們在思考和質疑的過程中提出問題,培育他們發現問題、提出質疑的科學批判精神,訓練并提高其創新能力、實踐能力和創新精神。創新精神和創新能力主要表現在具有健全的人格、強烈的責任感、開放的心態、團結合作的精神、嚴謹科學的思維能力和創新思維方式。
個性是創新的源泉,研究生課程體系的設置應該具有一定的靈活性,依據研究生不同的知識基礎和研究定向,設置具有彈性化的課程,使研究生的個性化得以凸顯。另外,為提高研究生專業研究和創新能力,在課程教學中,也應凸顯教學的研究性和專業性,重視專業領域背景知識和研究方法的講授,開展跨學科、非專業知識的教學,教學內容應涵蓋專業領域的研究熱點、難點、爭議問題和最新研究動態,還應包括交叉學科、邊緣學科的研究趨勢,以擴展學生的視野[3]。也就是說,研究生教學既要凸顯研究生的個性化特點,又要凸顯內容的學術性和研究的指向性。
2人工智能課程的特點
2.1多學科交叉,具有很強的前沿性
人工智能是一門多學科交叉的課程。課程內容的理解需要運用多學科知識和較強的邏輯思維能力,多學科的知識相互聯系、相互交叉,融合形成新的知識,成為新的思維方法和綜合能力的萌發點。通過課程學習,學生可以通過不同學科知識的融合來達到對原有知識的超越,用一種全新的思維方法來思考所遇到的問題,提出新的解決辦法。這也是創造力的迸發和智能的飛躍。具有了知識的廣度和深度才具有融會貫通、創新的可能,人工智能課程的開設能夠更好地培養學生的創新思維和技術創新能力,為學生提供一種新的思維方法和問題求解手段。
2.2涉及面寬,內容廣泛,更新快
人工智能課程是一門知識點較多的課程,它以概率統計、離散數學、數據結構、計算機編程語言、數據庫原理等課程為基礎,涵蓋了模式識別、機器學習、數據挖掘、計算智能、自然語言理解、專家系統等眾多研究方向,內容涉及面廣,概念抽象,不易理解。并且,人工智能課程內容更新快,近年來人工智能科學的快速發展,涌現出了大批新方法,研究熱點問題也從符號計算發展到智能計算和Agent等。其中,計算智能主要涉及神經計算、模糊計算、進化計算和人工生命等領域,在模式識別、圖像處理、自動控制、通信網絡等很多領域都得到了成功應用;Agent最早來自分布式人工智能,隨著并行計算和分布式處理等技術的發展而逐漸成為熱點。
在互聯網上有大量最新的與課程內容相關的研究論文,為學生提供了很好的查閱文獻的環境,使學生能夠根據所學習的內容和所在課題組的研究方向閱讀相應文獻,提高學生的學習興趣和獨立提出問題、解決問題的能力。
2.3應用性強
人工智能理論已經滲透到科學的各個領域,當前,幾乎所有的科學與技術分支都在共享著人工智能領域所提供的理論和技術。例如,自第一個專家系統DENDRAL研制成功以來,專家系統已成功地應用于數學、物理、化學、醫學、地質、氣象、農業、法律、教育、交通運輸、軍事、經濟等幾乎所有領域;數據挖掘技術是以一種更自動化的方式對具有大量數據的商業活動進行分析和預測,在市場營銷、銀行、制造業、保險業、計算機安全、醫藥、交通、電信等領域已有許多案例;語義Web讓Web上的信息能夠被機器所理解,實現Web信息的自動處理,成功地將人工智能的研究成果應用到互聯網。另外,在機器視覺、自然語言理解、智能控制與智能制造等方面,人工智能技術也得到廣泛的應用,有許多研究成果已經進入人們的生活。目前,從理論到技術,從產品到工程,從家庭到社會,智能無處不在,人工智能廣泛的應用性給學生提供了大量的現實案例,使得人工智能不再是高深莫測的理論,而是現實中可以觸及的內容。
人工智能課程的多學科交叉性、內容廣泛性、概念抽象、不易理解以及前沿性和應用性特點決定了在該課程的講授過程中應該采用多種授課方法。多種授課方法的采用一方面便于授課內容的理解,另一方面也能夠更好地培養學生的創新思維和技術創新能力,提高他們的科技素質和學術水平。
3人工智能課程教學方法
3.1基于問題的啟發式教學法
蘇霍姆林斯基說:“喚起人實行自我教育,乃是一種真正的教育。”基于問題的啟發式教學法是教師在深入了解學生心理特點和學習規律的基礎上,設計適合教學的啟發式問題,并采取靈活多樣、生動活潑的啟發方式,充分調動學生的學習興趣,激發、引導學生進行科學思維,培養學生獨立思考問題、提出問題和解決問題的能力。該教學方法強調的是過程,教師的主要任務是提出問題,依據舉一反三的思路引導學生展開邏輯推理,通過逐層分析深入思考問題,最后綜合學生觀點闡述相關理論。
在課程教學中,有許多內容適合于采用啟發式教學方法。例如,在知識表示方法的學習過程中,教師首先提出問題:“你是怎樣進行數學定理證明的?”并在學生的回答過程中,引導學生認識到知識及其表示的重要性;隨后,提出問題:“在計算機中如何表示知識?”引導學生逐步總結出不同知識表示方法在知識表達能力、推理效率、可實現性、可組織性、可維護性方面的區別。另外,在確定性推理的教學過程中,教師可以利用“某處發生盜竊案,公安局派出5個偵查員去調查,研究案情時,5個偵查員各給出了一句可信的結論,據此判斷誰是盜竊犯”的問題[4],讓學生進行判斷和討論,引導學生認識到推理過程中可以使用多條規則進行推理,并且推理路線也可能存在多條,從而引出推理的兩大基本問題:解決沖突消解等問題的推理策略,以及解決推理線路等問題的搜索策略。
啟發式教學法的要點是設計適當的啟發式問題和啟發方式、安排能調動學生積極性的討論環境、鼓勵學生發表個性化觀點。教師不僅用問題引發學生思考,更要鼓勵學生讓思維自由馳騁,主動提出問題,討論問題,尋求問題解決方案。在探討、研究問題中,不要以現有的結論和固定的程式束縛思想,鼓勵學生的個性化觀點。啟發式教學是一種民主、科學的教學方法,其中包含諸多具體的教學方法,如激疑啟發法、比喻啟發法、類比啟發法、聯系啟發法,等等。啟發式教學在傳授知識的同時,更注重的是對創新的孕育、萌芽、生成和壯大,它能促使學生自己獲取知識、思考問題、提出問題、分析問題、解決問題,培養學生的自學能力。以問題為基礎的啟發式教學,利用問題引導學生學習,全方位深層次發展學生的創新思維和探究性學習能力。問題可以誘發出學生的求知欲,激發、喚醒了學生的主體意識;問題往往是面向生活世界的實踐活動的,它使教學活動從以傳授知識為中心轉化為傳授知識與培養能力并重,理論與實踐相結合,提高了學生分析、綜合、觀察、想象等思維能力。
3.2基于案例的探究式教學法
基于案例的探究式教學法要求教師能夠根據學生的認知水平和能力,創設引導學生進行探究活動的案例,以激發學生探究問題的興趣,促進學生質疑、探求的創造性學習動機,通過選擇與確定問題、討論與提出設想、實踐與尋求結果、驗證與得出結論,發展學生的創造性思維,培養學生獨立探究、研究能力和創新能力。探究式教學強調學生的積極參與,強調師生互動。對教師來說,必須轉變傳統的“傳道”觀念,以平等的心態與學生交流探討。在課堂上,要努力營造民主、寬松、和諧的教學氛圍,積極引導學生大膽設想,大膽探索。使學生樹立研究型學習的觀念,消除依附心理,養成勤于思考、善于思考的良好學習習慣,通過積極參與研討培養學生自己獲取新知、探求未知的能力,以及團隊意識和合作精神。
我們在本課程神經網絡部分的教學中,將基于BP神經網絡的維吾爾文手寫字母識別作為案例開展了探究式教學活動。在介紹了前饋多層感知器及標準BP算法之后,教師將科研項目中基于標準BP算法的維吾爾文手寫字母識別實驗及其結果詳細地在課堂上進行演示,引導學生對實驗提出質疑。在教學實踐中,學生提出了大量問題,例如,輸出層神經元個數如何確定,為什么輸出層神經元個數對識別率會有影響?網絡訓練過程中出現震蕩的原因是什么?如何解決?為什么有時誤差較大,權值的調整量反而很???等等。在教師事先準備好的實驗演示的基礎上,開展學生進行課堂討論,讓學生提出解決問題的各種方法,并現場通過實驗進行驗證,逐步讓學生理解BP網絡結構設計、輸入輸出數據的預處理、初始權值設計的必要性及其實現方法。課堂授課實踐表明,這種方法極大地激發了學生的學習興趣,使學生能夠大膽設想,大膽探索,增加了學生的自信心和創新精神。本次課堂討論結束后,教師根據學生的討論以及實驗結果演示,總結標準BP算法的局限性,例如,“易形成局部極小”,“訓練次數多,學習效率低”,“訓練時有學習新樣本遺忘舊樣本的趨勢”等,并要求學生通過查資料、搜集必要的信息、積極地思索和實驗驗證提出解決上述問題的方法,將學生分組,讓學生展開討論,為下次討論課作好準備。
傳統教學方法是告訴學生怎么去做,在一定程度上損害了學生的積極性。而案例教學要求學生自己去思考、去創造,使得枯燥乏味的內容變得生動活潑,并且案例教學中,通過學生之間的交流既可以使學生取長補短、促進人際交流能力,也可以引導學生變注重知識為注重能力。
案例教學法的關鍵是案例的選擇。案例是為教學目標服務的,因此它應該具有典型性,且應該與所對應的理論知識有直接的聯系。案例最好是經過深入調查研究。來源于實踐,不能只是一堆數據的羅列。教科書的編寫應采用圖片、表格、曲線等方式讓學生看到算法的實驗結果,啟發學生思考。另外,案例應該只有情況沒有結果,有激烈的矛盾沖突,沒有處理辦法和結論,由學生對案例提出質疑,從這個意義上講,案例的情況越復雜,越多樣性,越有價值。
案例教學法能夠實現教學相長。教學中,教師不僅是教師而且也是學員。一方面,教師是整個教學的主導者,掌握著教學進程,引導學生思考、組織討論研究,進行總結、歸納。另一方面,在教學中通過共同研討,教師不但可以發現自己的弱點,而且從學生那里可以了解到大量感性材料。另外,案例教學法能夠調動學生學習主動性。教學中,由于不斷變換教學形式,學生大腦興奮不斷轉移,注意力能夠得到及時調節,有利于學生精神始終維持最佳狀態。案例教學的最大特點是它的真實性。由于教學內容是具體的實例,加之采用是形象、直觀、生動的形式,給人以身臨其境之感,易于學習和理解。最后,案例教學法能夠集思廣益。教師在課堂上不是“獨唱”,而是和大家一起討論思考,學生在課堂上也不是忙于記筆記,而是共同探討問題。由于調動集體的智慧和力量,容易開闊思路,收到良好的效果。
3.3加強研討
鑒于研究生的培養目標和人工智能課程研究范疇的寬泛性、應用性、創新性和前沿性,根據我校計算機系碩士生指導教師的研究領域,我們在課堂教學中為計算智能、機器學習算法、機器視覺、自然語言理解部分增加了研討會,要求學生上網進行文獻檢索、閱讀和學術研討,根據個人的研究興趣和研究設想上臺作報告。另外,我們還邀請相應專家和成果突出的各屆研究生為學生做報告,介紹他們的研究實踐、研究成果和心得體會。例如,在自然語言理解部分的課堂教學中,在介紹完自然語言理解的基本概念與原理之后,我們要求將來做這個領域的研究生在通過查資料了解所在研究小組工作的基礎上,上臺作報告。機器翻譯研究組的同學在學習自然語言理解部分的內容之后,對其所在小組目前的工作及采用的技術、存在的問題做了分析,并通過閱讀文獻,提出了初步的解決問題的設想。與自己所在研究小組的科研相結合,開展文獻檢索和學術研討,一方面讓學生開闊了眼界,另一方面也提高了學生查閱文獻、主動獲取知識、獨立思考的科研能力。
4結語
人工智能理論已經滲透到科學的各個領域,人工智能技術也得到了廣泛的應用。人工智能課程具有多學科交叉、內容廣泛、前沿性和應用性強等特點,課程開設能夠很好地培養學生的創新思維和技術創新能力。教與學是教師與學生雙方互動的過程,教學中要根據學生身心特征的實際情況采用相應的教學方法,并結合本校科研隊伍的研究領域,不斷地探索和提高,才能使教學工作更上一層樓,切實為國家、為社會培養具有創新能力、實踐能力和創業精神的高層次人才。
參考文獻:
[1] 陳白帆,蔡自興,劉麗玨. 人工智能精品課程的創新性教學探索[J]. 計算機教育,2010(19):27-31.
[2] 謝安邦. 構建合理的研究生教育課程體系[J]. 高等教育研究,2003,24(5):68-72.
[3] 教育部研究生工作辦公室,國務院學位委員會辦公室. 高層次人才培養的研究與探索[M]. 北京:高等教育出版社,2000.
[4] 蔡自興,徐光佑. 人工智能及其應用[M]. 4版. 北京:清華大學出版社,2010:113.
Exploration of Artificial Intelligence Course Teaching of Graduate Students
ZHAO Hui1, JIA Zhenhong1, WANG Weiqing2
(1.School of Information Engineering, Xinjiang University, Urumuchi 830046, China;
2.Graduate School, Xinjiang University, Urumuchi 830046, China)
人工智能課程教學范文2
關鍵詞:人工智能;創新性教學;精品課程;課程建設;教學改革
人工智能課程是計算機類專業的核心課程之一,也是智能科學與技術、自動化和電子信息等專業的重要課程,其知識點具有不可替代的重要作用。該課程內容廣泛,具有很強的綜合性、應用性、創新性和挑戰性[1],其開設能夠更好地培養學生的創新思維和技術創新能力,為學生提供了一種新的思維方法和問題求解手段。同時,本課程能夠培養學生對計算機前沿技術的前瞻性,提高他們的科技素質和學術水平。通過課程的學習,學生對人工智能的定義和發展、基本原理和應用有一定的了解和掌握,啟發了對人工智能的學習興趣,培養創新能力。
中南大學人工智能課程開設于20世紀80年代中期。1983年,蔡自興作為訪問學者赴美國普度大學研修人工智能,并與美國國家工程科學院院士傅京孫(K. S. Fu)教授及清華大學徐光v教授合作研究人工智能。在傅京孫院士教授的指導下,蔡自興和徐光v教授執筆編著《人工智能及其應用》一書,并于1987年5月在清華大學出版社問世,成為國內率先出版的具有自主知識產權的人工智能教材。本教材不僅為我校人工智能課程提供了一部好教材,而且促進了國內高校普遍開設人工智能課程。此后,又陸續編著出版了《人工智能及其應用》第二版、第三版“本科生用書”和“研究生用書”、第四版等,修讀該課程的學生也與日俱增。該書第二版還獲得國家教育部科技進步一等獎。經過近20年建設,該我校人工智能課程于2003年評為國家精品課程,并在2008年評為國家雙語教學示范課程。這是至今國內唯一同時獲得國家級精品課程和雙語教學示范課程的人工智能課程。同時,我們還開發了人工智能網絡課程,具有網絡化、智能化和個性化等特色,被國家教育部評為優秀網絡課程,供兄弟院校人工智能教學參考使用,受到普遍歡迎[2]。
作為國內第一門人工智能精品課程,我們按照教育部精品課程標準建設《人工智能》課程,尤其是在教學內容、創新性教學方法和教學模式上進行不斷進行改革與探索,取得了很好的效果。本文即為我校人工智能精品課程建設與改革經驗的初步總結。
1教學內容優化
1.1課堂教學內容優化
教學內容的確定是課程的首要任務。如何選好教學內容,使學生既能了解本領域的概貌,又能適合學生的基礎,便于他們在有限的時間完成學習任務,是一件難事。教學內容除了包含基礎理論外,還應該反映人工智能領域的新發展和新動態,跟上學科發展的步伐。本課程最初設定的教學內容分基礎部分和擴展應用部分?;A部分主要包括人工智能的定義和發展、知識的表示以及推理,而擴展應用部分主要包括專家系統、機器學習、機器規劃、機器視覺等。
近年來人工智能科學的快速發展,涌現出了大批新的方法和算法,研究熱點問題也從符號計算發展到智能計算和Agent等。
學內容,既能使學生了解本領域的概貌,又能適合學生的基礎,便于他們在有限的時間完成學習任務,是一件難事。教學內容除了包含基礎理論外,還應該反映人工智能領域的新發展和新動態,跟上學科發展的步伐。本人工智能課程最初設定的教學內容分基礎部分和擴展應用部分?;A部分主要包括人工智能的定義和發展、知識的表示以及推理,而擴展應用部分主要包括專家系統、機器學習、機器規劃、機器視覺等。
近年來人工智能科學的快速發展,涌現出了大批新的方法和算法,研究熱點問題也從符號計算發展到智能計算和Agent等。
隨著科學技術的不斷進步,在科學研究和工程實踐中遇到的問題變得越來越復雜,傳統的計算方法無法在一定時間內獲得精確的解。為了在求解時間和求解精度上取得平衡,很多具有啟發式特征的智能計算算法應運而生。這些算法通過模擬大自然和人類的智慧來實現對問題的優化求解。計算智能作為人工智能的一個新的分支是目前的研究熱點,它主要涉及神經計算、模糊計算、進化計算和人工生命等領域,在如模式識別、圖像處理、自動控制、通信網絡等很多領域都得到了成功應用。另一個近10年來人工智能的研究熱點是Agent和多Agent系統,其理論最早來自分布式人工智能,并隨著并行計算和分布式處理等技術的發展而逐漸成為熱點。
以上兩個內容都是人工智能的重要分支。因此,我們在《人工智能及其應用》第三第3版[3]和第四第4版教材[4]中已經順應形勢加入了這方面的內容,并將教學內容也進行了相應的擴展,加入了計算智能、分布式人工智能與Agent。由于不確定性推理和基于概率的推理方法應用也越來越廣泛,我們也將此類非經典推理方法單獨作為一章來進行教學。另外,還增加了一些新的內容,如本體論和非經典推理、粒群優化和蟻群計算、決策樹學習和增強學習、詞法分析和語料庫語言學,以及路徑規劃和基于Web的專家系統等。圖1給出本課程的教學內容大綱。
人工智能的教學內容涉及面廣且內容較多,要在有限課時內完成教學計劃并讓學生掌握,具有一定難度。因此需要根據教學對象的需求有所取舍。中南大度。因此需要根據教學對象的需求有所取舍。中南大學在智能科學與技術、計算機、自動化三3個專業中均開設了人工智能課程,根據相關專業課程教學對象,對學時和教學內容進行適當調整。對于智能科學與技術專業,人工智能課程為必修課,共48個學時含實驗8個學時。表1表示為相關專業的人工智能課程教學內容分配情況。對于計算機和自動化專業,人工智能課程為選修課,共32個學時含實驗8個學時。許多兄弟院校的計算機專業都把人工智能定為必修課,課程學時也在50學時左右。因此,我們一再強烈建議我校的計算機專業把人工智能列為必修課,并適當增加學時。由于智能科學與技術專業開設有專家系統和智能計算選修課程,因此在人工智能教學內容中只將這兩部分做簡要闡述,而將重點放在知識表示和推理以及擴展應用上。對于計算機專業學生來說,除基本的知識表示和推理外,計算智能和Agent技術也是他們在軟件開發和通訊技術理論學習中需掌握的重要概念。同時,計算智能、專家系統對自動控制和電氣工程也十分重要,對自動化專業則應掌握該方面的內容。
1.2實驗實踐教學創新
國內人工智能課程在開設之初大多沒有安排實驗內容,僅為理論基礎和概念講授。由于理論比較抽象,很難理解,學習效果不理想,學生們對于其應用實現也十分困惑。此后,各高校也逐步在該課程中分配了實驗學時,大多數采用prolog語言和專家系統作為實驗語言和對象[5]。為了改進該課程的教學,我們也從沒有實驗到將實驗學時從零調整為設置4個學時的實驗課時,然后到現在的8個學時的實驗課時。隨著課堂教學內容的改革,實驗內容也進行了優化和更新。
人工智能課程實驗的目的是幫助學生掌握基本理論,發揮主動性,研究探討人工智能算法和系統的運行和實現過程,提出思路并驗證自己探索的思路,從而更好的地掌握知識,培養研究能力和創新能力。因此,在實驗教學內容的設計上,實驗項目應具備研究性和綜合性。實驗項目目標明確,要求學生帶著問題和任務進行實驗,但實驗過程又要有一定的靈活性,學生可以根據自己的思考進行適當的調整。再者,充分采用虛擬實驗方式進行實驗,大大提高了學生的興趣,提供了分析和探討智能算法的很好平臺。同時,學生的實驗數據和實驗結果分析既有格式要求,又給學生報告自己的研究的過程和結果留有空間,并在評分時加以充分考慮。這些做法能夠鼓勵學生,特別是鼓勵優秀學生進行獨立性研究,滿足他們學習的需求。
1) 人工智能課程的實驗環節不足和課時分配問題。
中南大學的人工智能課程的實驗環節經歷了從精品課程建設前沒有到開設,一直到其內容和形式上的不斷改進過程。但目前實驗還主要處于演示性和編程的實驗階段,而非設計和訓練階段。此外,由于人工智能課程涵蓋范圍廣、內容多,而課程所設置的學時有限。,如何分配好課堂教學與實驗課時也是一個需要在今后課程建設中不斷探索的問題。
對于某些專業的人工智能課程,可以考慮單獨開設人工智能實驗課程或人工智能程序設計與實驗課程。
2) 人工智能技術發展迅速情況下如何保持該精品課程持續發展的問題。
人工智能作為一門高度融合的交叉科學,其發展速度迅速,不斷有新理論、新問題涌現出來。我們的
人工智能教學既要注重基礎理論知識,又要緊跟學科發展的步伐,勢必要求對課程內容進行不斷更新,這對我們的教學資源和教師素質都提出了更高的要求。
4結語
本文介紹了中南大學的精品課程――人工智能課程教學內容和創新性教學方法的一些探索,已在課堂教學內容的優化、實驗環節的改進、教學方法的創新的實施上取得了很好的效果,充分激勵了學生的學習積極性和主動性,多方位培養學生發現問題、分析問題和解決問題的能力。我們的想法和做法可供兄弟院校同行參考。不過,仍然存在一些不足之處。隨著智能科學與技術的發展和更為廣泛的應用,人工智能課程的重要地位必將更加突顯,我們也需要繼續努力,與時俱進,不斷完善人工智能精品課程的建設。
注:本文受教育部質量工程國家級精品課程人工智能(2003)、全國雙語教學示范課程人工智能(2007)項目支持。
參考文獻:
[1] 薛瑩. 創新教育新途徑人工智能與機器人教育:哈爾濱市教育研究院張麗華院長訪談錄[J]. 中國信息技術教育,2010(1): 20-22.
[2] 蔡自興,肖曉明,蒙祖強,等. 樹立精品意識搞好人工智能課程建設[J]. 中國大學教學,2004(1):28-29.
[3] 蔡自興,徐光佑. 人工智能及其應用[M]. 3版. 北京:清華大學出版社,2003.
[4] 蔡自興,徐光佑. 人工智能及其應用[M]. 4版. 北京:清華大學出版社,2010.
[5] 韓潔瓊,閆大順. 人工智能實驗教學探討[J]. 計算機教育,2009,(11):135-138.
[6] 劉麗玨,陳白帆,王勇,等. 精益求精建設人工智能精品課程[J]. 計算機教育,2009,(17):69-71.
Exploration of Innovative Teaching Mode of Artificial Intelligence Elabrate Course
――Construction and Reformation in Elaborate Course of Artificial Intelligence
CHEN Bai-fan, CAI Zi-xing, LIU Li-jue
(Institute of Information Science and Engineering, Centnal South University, Changsha 410083, China)
人工智能課程教學范文3
關鍵詞:人工智能;教學改革;教學方法
引言
人工智能(ArtificialIntelligence)是一門研究和模擬人類智能的跨領域學科,是模擬、延伸和擴展人的智能的一門新技術。由于信息環境巨變與社會新需求的爆發,人工智能技術的日趨成熟。隨著AI3.0時代的到來,大數據、云計算等新技術的應用也愈發廣泛,對于管理類人才來說,加強對人工智能知識的深入學習,不斷將人工智能技術與管理知識結合起來,對其未來職業生涯的發展有著重要作用。人工智能是一門前沿學科,管理學院開設人工智能課程的目的是為了更好地培養學生的技術創新思維與能力,基于其覆蓋面廣、包容性強、應用需求空間巨大的學科特點,通過概率統計、數據結構、計算機編程語言、數據庫原理等基礎課程的學習,加強學生解決實際問題的能力,為就業打下基礎。本文基于社會對于人工智能領域的人才需求,結合諸多長期從事經管類專業課程教學的老師意見,針對管理類人才的人工智能課程教學內容與方法進行探討,以期對中國高校人工智能課程教學改革研究提供幫助與借鑒。
1、教學現狀與問題
作為一門綜合性、實踐性和應用性很強的理論技術學科,人工智能課程內容及內涵及其豐富,外延極其廣泛。學習這門課程,需要較好的數學基礎和較強的邏輯思維能力。針對管理類人才,該課程在課程教學過程中存在幾個較為突出的問題。(1)課堂教學氛圍枯燥目前,中國大多數大學仍采用傳統的課堂教學模式,在教學過程中照本宣科,忽略與學生的互動,并且缺乏能夠有效引起學生學習興趣與加深知識理解的教學環節設置,如此一來大大降低了學生自主思考的能力。在進行人工智能相關課程知識講解時,隨著章節的知識難度不斷增加,單向介紹式的枯燥教學方式無法反映人工智能學科的全貌,課堂講解難以同時給以學生感性和理性的認知,部分學生因乏味的課堂氛圍漸漸無法跟上教學進度,導致學習動力不足。(2)基礎課程掌握不牢管理類專業的學生大部分都會走向更加具體化的管理崗位,具有多學科的素養,但這也導致很多學生所學知識雜而不精。學生在基礎不夯實的情況下去學習更高層面的知識,給學生學習與老師教學都造成了很大困擾。人工智能課程知識點較多,涵蓋模式識別、機器學習、數據挖掘等眾多內容,概念抽象,不易學習。一些管理類專業的學生未能熟練掌握高等數學、運籌學、數據結構、數據庫技術等先修課程,缺乏一定的關聯思考和研究意識,導致課程學習難度增加,產生學時不足和教學內容難點過多的問題。(3)教學與實際應用脫節當下,人工智能廣泛應用于機器視覺、智能制造等各個領域,給學生提供了大量的現實案例,使得人工智能不再是高深莫測的理論,而是現實中可以觸及的內容。例如,在機械學科領域,人工智能技術是電氣工程、機械設計制造、車輛工程等方向的重要技術來源;在醫療領域,是醫療器械的創新生產源動力;在能動領域,是高端能源裝備與新能源發展的重要驅動;在光電信息與計算機工程領域,技術的發展時刻推動著智能科學與技術核心價值的提升。然而,對于管理類專業的學生來說,現階段的人工智能教材涵蓋許多智能算法及相關理論,在教學過程中常常涉及到很多從未接觸過的抽象理論和復雜算法,書本中的應用實例大多紙上談兵,缺乏專門適用于管理類專業知識與人工智能技術相結合的教學實踐,加上一些教師授課方法單一,不利于引導學生將人工智能算法應用于現實生活。另外,大學生對知識的理解能力差異很大,教師采用統一的方式教給他們,這使一些學生無法跟上和理解,教師也無法控制學生的學習狀況,導致學生缺乏動力。因此,如何結合學生的現實情況,提高他們的動手能力和實踐經驗也是人工智能課程教學要考慮的問題。
2、管理類人才的人工智能課程教學改進策略
課程教學改革是一項提高大學教學效果和人才培養質量的重要手段。如何在時代背景下應用新技術和新思想進行實施課程教學改革是高校亟待解決的問題。對于高校的教學工作而言,教學目標、教學內容和教學方式的變化不再是課程資源的簡單數字化和信息化,而是充分利用時代信息資源優勢的新型教學模式。針對管理類專業人工智能課程教學過程中存在的問題,可以從教學方法改進和教學內容設置兩個方面進行課程教學改進。
2.1教學方法改進
教師對學生具有引領作用,其教學方法的改進能夠帶動學生改進自身學習方法。(1)啟發式案例教學案例教學法就是教師根據教學目標、教學內容以及教學要求,通過安排一些具體的教學案例,引導學生積極參與案例思考、分析、討論和表達等多項活動,是一種培養學生認知問題、分析和解決問題等綜合能力的行之有效的教學方法。啟發式案例教學以自主、合作、探究為主要特征,調動學生的學習積極性,并緊密結合人工智能領域的相關理論與方法,有效理解知識要點及其關聯性,適用于管理類專業學生的教學。具體而言,高?;谄鋯栴}啟發性、教學互動性以及實踐有用性等特點,可以建立基于人工智能知識體系的教學案例庫,雖然這項建設將極具挑戰性與耗時性,但具有很強的積極效果:培養學生較強的批判性思維能力,更多地保留課程材料,更積極地參與課堂活動,對提高教學質量、培養具有人工智能背景的管理類人才具有重要意義。例如,通過單一案例教學,讓學生掌握相關基礎知識原理及應用;通過一題多解的案例使學生思考如何獲取最有效的解題方法;通過綜合案例的設計,啟發學生全方位地探索問題的解決方案。(2)研討互動式教學研討互動式的各個教學環節是逐漸遞進、有機結合的。研討是基于學生個體的差異性,在課堂討論的過程中對學生做出評判,從而對不同類型的學生開展針對性的教學?;觿t是在研討的基礎上,通過老師與學生、學生與學生的互動,讓學生主動參與到課堂教學的過程中來。在人工智能課程教學過程中,教師通過課堂討論了解學生對于知識點的掌握情況,可以有針對性地設計教學內容,例如,對于學校積極性不強的學生,將人工智能理論內容與學生個人興趣范疇、社會產業發展及研究現狀聯系起來,能夠極大程度地提高學生學習的自主能力;對于基礎知識較為薄弱的學生,可以在教師的指導下查閱相關文獻資料,根據自己的理解撰寫心得報告,并在課堂或課外進行師生互動。像這樣研討與互動相結合的模式。有助于增強學生的探索和求知欲望,建立起濃厚的學習氛圍。(3)有效激勵式教學人工智能是引領未來的戰略性技術,人才需求量極大,對教師的教學水平也提出了更高要求,因此,進行有效激勵極為重要。在學生激勵方面,可以舉辦各類人工智能競賽項目,設置相應項目獎學金,吸引學生參與實踐,調動學生做研究、發論文的積極性。例如,教育部主辦的中國研究生人工智能創新大賽,圍繞新一代人工智能創新主題,激發學生的創新意識,提高學生的創新實踐能力,為人工智能領域健康發展提供人才支撐。高校也可以借鑒這種模式,在各學院乃至全校開展此類競賽項目,激發學生的創新能力與團隊合作能力,鼓舞更多學生加入到人工智能課程的學習中來,激發其學習興趣。在教師激勵方面,在教師聘任和提升過程中把參加學生課程制定、課堂與課外作業、課程項目和論文指導等看作教學任務的一部分,鼓勵教師積極參與這些活動。(4)學科滲透式教學人工智能學科知識融合程度較高,學科交叉性強?;谌斯ぶ悄艿膶W科交叉性特點,增強管理類人才對學科應用的領悟,可以采取開展學科滲透式教學的方法。從2015年起,國務院和教育部先后印發了《國務院關于積極推進“互聯網+”行動的指導意見教育》、《高等學校人工智能創新行動計劃》等文件,“互聯網+”、“智能+”已經滲透到各個領域,人類進入數字經濟時代,社會需求“技術+管理”的高端復合人才。例如,基于工業4.0和強國戰略,人工智能技術在智能制造的應用極為廣泛。上海理工大學非常重視少數民族預科班的教育質量。為增強少數民族管理類人才對該領域應用的認識,我們請機械工程、能源動力領域的相關專家以授課或講座的形式,進行相關領域知識和發展趨勢的講解,使學生理解更為透徹。此外,在教學實踐過程中,還可以用舉辦人工智能知識交流會、線上人工智能論壇等形式,促進不同專業間老師、學生對于人工智能知識模塊的見解,相互交流、滲透和學習,從而推動人工智能課程教學的改進。
2.2教學內容設置
世界一流大學在人工智能課程內容設置根據不同國家的教育體系設置,肯定會有不同,但頗有共通之處。本文借鑒世界頂尖大學經驗,針對管理類專業人工智能課程教學內容進行研究,結合中國教育體系設置,認為應從以下幾方面進行改進。(1)核心內容設置為避免學生因為知識點過多而出現雜而不精的問題,勢必要精化教學內容。在互聯網時代,我們可以使用云計算和其他方式來實現數據信息的傳輸、存儲和處理,通過在線收集和整合網絡課程相關數據,挖掘和豐富教學資源,并在整合課程資源的基礎上,進行研究方法和前沿知識的擴展。在核心內容設置方面,可以通過收集到的數據資料,選擇人工智能領域具有代表性且難易程度適中的知識作為重點,使學生能夠在有限的學時內掌握人工智能的知識脈絡。例如,編寫針對管理類人才的人工智能教材,內容涉及緒論、知識表示與推理、常用算法、機器學習、神經網絡等方面的同時,重點增加相應知識點在管理上的應用案例,加強學生對知識點的理解。同時,根據管理類專業偏向領域,開設關聯程度較大、應用較廣泛的人工智能選修課程,以便學生根據自己的興趣與需求選修具體方向的課程。(2)注重學生的數理及編程基礎良好的數理及編程基礎是學習人工智能的前提。只有具備了這些基礎,才能搞清楚人工智能模型的數量關系、空間形式和優化過程等,才能將數學語言轉化為程序語言,并應用于實驗。管理學院人才的數理及編程基礎相對薄弱,因此,在安排學生學習人工智能課程之前,建議開設面向全體管理類專業學生的微積分、線性代數、概率論等專業基礎數學課程以及C語言、python等編程基礎課程,使學生具備數學分析的基礎與一定編程基礎,為學習人工智能課程打下堅實的基礎。另外,可以推進MOOC平臺建設,在平臺上開設人工智能網絡課程,幫助學生掌握人工智能知識基礎及專業技能。(3)實驗建設為了加強學生對于人工智能知識點間的關聯性理解,可以基于不同的應用模塊,設計具有前后鋪墊、上下關聯的綜合性實驗,設計不同層次的項目要求,同時基于相同的實驗課題,讓學生分組對實驗課題進行攻克,并設置多元化的實驗評價體系,通過實驗教學過程中反映出的不同進度,讓教師能對學生的學習水平做出準確評判,及時進行教學反思,以便更好地開展下一步工作。例如,針對人工智能課程應用中很廣的遺傳算法,在某一管理規劃的具體應用上設置理解-實現-參數分析-具體應用-嘗試改進-深度拓展的不同層次的項目要求,在這些項目層次中規定必做項與可選項,讓學生基于同一實驗課題進行合作學習,然后通過個人自我評價、小組成員互相評價以及教師評價的方式進行打分,對小組整體能力以及個人能力進行綜合評估,以期培養學生的自主思考能力。
人工智能課程教學范文4
【關鍵字】人工智能;課程改革;高中;信息技術;課程實施
【中圖分類號】G420 【文獻標識碼】A 【論文編號】1009―8097 (2008) 10―0043―04
教育部在2003年頒布的高中信息技術新課程標準中,首次把“人工智能初步”設置為選修模塊,與多媒體、網絡、程序設計、數據庫技術等一起列入信息技術課程體系[1]。此舉曾被視作信息技術課程改革的亮點之一。然而,在如今高中信息技術新課改已經全面鋪開之際,人工智能選修課程的推進仍然舉步維艱,面臨諸多困難和問題。
一 高中人工智能課程的現狀分析
自2004年我國部分省級實驗區開始推進高中新課程改革以來,信息技術課程改革已經開展了四年之久。從目前的總體情況來看,信息技術課程的基礎模塊與多媒體技術、網絡技術、算法與程序設計三個選修模塊的實施情況較好,而數據庫技術與人工智能初步兩個選修模塊的推進情況相對不佳。特別是人工智能課程,至今在全國范圍內正式開設該課程的學校寥寥可數,少數高中展開了一定的探索和實驗,而大多數學校仍持有觀望態度。以下分別從實施取向和實施層次的角度分析該課程的現狀:
(1) 課程實施的取向
由于我國長期以來實行的是全國統一的課程與教材,按照統一規定執行教學計劃,對學校和學生的評價也是按照統一標準與方式實施的,因此我國以往的課程實施基本上都采用了忠實觀的取向[2]。本次新課改中信息技術課程的實施過程難免受到這種取向的影響。然而,新課程標準中對信息技術技術各個模塊的具體實施并沒有明確而詳細的規定,從而使教師對包括人工智能模塊在內的課程實施缺乏長期慣于依賴的參照和依據,增加了課程實施的難度,造成部分模塊的課程難以開設的情況。
(2) 課程實施的層次
課程實施包括五個層面的變化,即教材的改變、組織方式的改變、角色和行為的改變、知識與理解的改變、價值的內化[3]。目前高中人工智能課程在教材改變的層面已經做出了一定的努力。在課程標準的指導下,現已出版的五套教材在體例、版面、學習活動、評價等方面進行了多樣化的設計,基本上貫徹了新課標所倡導的課程目標和理念。在組織方式的層次,少數已經開設人工智能課程的學校結合學生的興趣與學校的實際情況,有針對性地開展了課程的組織。然而,仍然有一些地區或學校不愿或不習慣打破原有的課程組織方式,而是采用硬性規定的方式,人為指定兩三門課程,將選修變為必修,限制學生的自由選擇,依然維持原有的固定班級授課的形式。教材的改變僅僅是課程實施的開始,在組織方式、角色或行為、知識與理解、價值等層次,大部分學校還未發生變化或變化還很小。
(3) 課程實施的典型個案
目前國內開展人工智能課程教學或實驗的典型學校如表1所示??傮w來看,這兩所學校都地處東南沿海地區,且學校本身比較積極參與高中新課改的實踐探索,屬于“敢于吃螃蟹”的類型??紤]到課程本身的要求較高,兩所學校都選取了基礎較好的學生開展教學。到目前為止,兩所學校均已開展了三期的教學或實驗探索,任課教師及時總結教學心得體會,并在相關教學刊物或課程研修活動中與廣大一線教師分享教學經驗。
二 高中人工智能課程的影響因素
根據Snyder的研究,可以把課程實施的影響因素歸納為四個方面:課程改革自身的性質、校區的整體情況、學校的水平以及外部環境[4]。結合高中人工智能課程的現狀,本文分別從以上四個方面來探討影響該課程的主要因素。
(1) 課改自身的性質
課程改革本身的性質是影響課程實施的第一要素。它包括課程改革的必要性及其相關性、改革方案的清晰程度、改革內容的復雜性以及改革方案的質量與實用性。結合信息技術新課程改革的相關調查研究,廣大信息技術教師和教研人員對課改的必要性應該認識得比較到位,然而他們對信息技術課程中是否有必要單獨開設人工智能模塊存有疑惑。其次,不少教師對課程改革方案(課程標準)的認識并不是非常清晰。他們認為新課程標準中的教學理念、實施建議等內容相對抽象,不易把握和理解,缺乏具體的針對性,可操作性不強。再次,人工智能課程的實用性相比其他模塊并不明顯,課程內容也相對難度較高。這些因素造成課程設置的必要性不強、實施難度大、實用性不高,直接影響人工智能課程在學校的順利設置。
(2) 校區的整體情況
校區的整體情況主要包括地區的適應性、地方管理部門的支持、教學隊伍的培養、教學研討和交流等等。各地區對課程改革的需要程度會直接影響人們實施課程的積極性和主動性。我國東西部地區的學校對課程改革的需求程度不同,從而造成了課程實施的地區差別。從目前開設人工智能課程或教學實驗的學校來看,均分布于東南沿海較為發達的地區。這些學校的共同特點是基礎條件較好,對課程改革的積極性高,敢于進行教學嘗試和革新。此外,地方管理部分的支持對課程實施也有很大影響,如廣東省為了推動信息技術課程改革,專門出臺了關于課程標準的教學指導意見[5]。其中強調“要特別注意人工智能初步”,并針對人工智能課程提供了較為具體的教學建議,從而促使該省出現了全國最早正式開設人工智能課程的學校。師資隊伍也是影響課程的因素之一。目前大多數高中缺乏熟悉人工智能課程內容和教學方法的專業教師,使得學校無法開設該課程。因此,有關人工智能課程的研討和學習交流顯得尤為重要,然而目前這些方面的活動總體上相對缺乏。
(3) 學校的水平
學校水平對課程實施的影響因素包括校長的作用、教師的個人特征和教師集體的行為取向。學校是課程改革的基本單位,校長和教師是學校課程改革的動因。校長對課改理念的理解,以及對課改的支持、參與程度都會影響課程的順利實施。校長通常會根據上級主管部門的意見,結合本校的實際情況,權衡課程改革可能對學校形成的各種影響。在高考的影響下,信息技術課程在高中各科中長期存在地位“低人一等”的現象,甚至出現課時常被“侵占”的現象。如果校長對信息技術課程本身不重視,那么要求學校開設人工智能選修課無疑是一種奢望。此外,一所學校教師個人和集體的改革意識的強弱也會影響課程的實施。從人工智能課程的現狀來看,恰好印證了這一點:改革意識強的教師個人或教研組即使沒有上級的硬性指令,也能積極展開各選修模塊的教學嘗試和探索,并自覺地從教學者成長為研究者,而思想保守的學校即使具備了課程實施的基本條件,也不愿積極開設相關的選修課程,長期停留于課程的“忠實執行者”的層次。
(4) 外部環境
外部環境因素主要包括政府部門的重視、外部機構的支持以及社區與家長的協助。各國課程改革的經驗表明,教育行政部門和相關機構的態度在很大程度上影響到新課程的順利實施。特別是我國長期以來受到前蘇聯教育模式的影響,課程改革通常是自上而下的模式,新課程的實施主要依靠各級政府教育行政部門的政策和指令的推動。本次新課程改革同樣繼承了這一模式,但是整個教育體制和評價體系未能及時進行相應的調整,因此在某些方面造成各級教育部門的政策抵觸,出現“上有政策、下有對策”的情況。此外,社區與家長對新課改的認識和態度也影響到人工智能課程的實施。研究表明,社區與家長更加關心的是新課改是否有助于提高學生的學業成績,是否會給學生造成更大的負擔,而對學生能力的全面發展和個性的培養則是其次的考慮。因此,要使社區與家長認識和了解課程改革的意義和目標,引導其關心新課程、支持新課程才能更好的促進新課改的健康發展,進而才可能使得包括人工智能在內的高中各科選修模塊得以全面開設與實施。
三 高中人工智能課程的反思
通過調查訪談以及與相關授課教師的交流,筆者了解到高中人工智能課程的教學情況和教師的經驗體會。總體來說,該課程的推進情況不如預期理想,需要從課程的設計、管理、教學以及評價等方面進行反思。
(1) 課程設計
本次高中信息技術課程改革將原來的一門課程分解為1個必修模塊和5個選修模塊,從而給學生提供多樣化的選擇?!叭斯ぶ悄艹醪健边x修模塊是作為智能信息技術處理專題設置的,以反映信息技術學科的發展趨勢,體現教育的時代性要求。課程設置的目的在于使學生在技術掌握與使用的過程中,逐漸領會信息技術在現代社會中的應用以及對科學技術和人類發展的深遠意義[6]。然而,以上的描述更多是該模塊的隱性價值,相比其他模塊該課程的顯性價值并不是很直觀。而一線的信息技術教師較多關注的是該課程的顯性價值:課程能給學生帶來些什么?學生的實踐能力能否有較大提高?教師們在沒有找到一個合理的價值依托之前,一般不會貿然開課。這一點值得課程設計者和教研人員的深刻思考。
通過網絡問卷調查,不少教師認為人工智能課程在高中開設是有一定必要性的[7],但并不意味著所有的學生都需要學習該課程。課程應面向對人工智能有一定興趣的學習者,且最好有一定的基礎。事實上,相對于其他選修模塊,選擇人工智能課程的學生并不是很多。因此,結合我國目前的情況,可以考慮優先在發達地區條件較好的部分學校開設,再進一步利用其示范作用,以點帶面,逐步鋪開培訓、指導、交流的規模和影響面,積極穩妥地推進高中人工智能課程的建設。
(2) 課程管理
課程的有效管理有助于提高課程實施的質量。上個世紀90年代以來,我國的中小學課程由原來的中央集權管理體制逐步轉變為國家、地方、學校的三級管理體制。國家負責課程的總體規劃,省級教育部門結合本地區實際制定課程計劃或實施方案,而學校也將有權根據學校傳統或學生興趣開發適合本校的課程。目前人工智能課程雖然已被列入國家課程標準,但在地方管理層面并未得到應有的認可。部分地區考慮到高考因素,直接將人工智能模塊排除在學生的選擇范圍之外,無疑成為阻礙該課程順利實施的一個重要原因。
目前我國高中了解熟悉人工智能教學內容、方法的教師十分缺乏,相關教育主管部門需加強該課程的師資培養,邀請教材編寫人員和相關專家,積極開展各級培訓、研討和交流活動,以務實的態度來聽取學科教師的意見,為他們提供一些明確的、可操作的指導和建議。也可以開展優秀教學案例的征集和評獎,通過公開課的觀摩和點評活動,或吸納中學教師參與有關課程改革和教學研究的課題,以此提高教師參與改革的積極性。此外,國內高等師范院校信息技術相關專業應該對新課改作出及時的反應,針對高中信息技術各選修模塊為師范生開設相關的課程,為課改的成功實施提供后備師資力量的支持。
(3) 課程教學
從已開展的人工智能課程教學或實驗情況來看,主要的教學體會包括:教學對象選取時要有針對性,不宜硬性指定,應結合學習者自己的興趣和學習基礎供其自由選擇;由于課程的理論和技術的要求較高,不宜大量采用“講授法”進行教學,應設計一些有挑戰性的活動供學生實踐;為保證教學進度有序進行,可通過課堂小測及時鞏固所學內容;應提供良好的網絡條件和計算機設備以支持課程教學和實踐的順利開展。
國外一些高校通過遠程網絡的手段與中學合作開展人工智能教學,加快了課程建設的步伐,并提高了教學質量。大學負責教學網站的建設維護,主持與中小學的討論答疑,中學則負責課程教學的具體實施。文中個案也印證了這種做法的有效性:讓一些致力于高中人工智能課程研究的高校和部分條件較好的中學建立共同體,協作推動課程的實施。一方面,高校研究人員能為中學提供教學指導建議、技術和資源的支持;另一方面,中學的教學實踐也為高校進行課程教學研究提供了材料和依據。
(4) 課程評價
研究表明,評價目前已成為影響高中信息技術新課程實施的一個重要問題[8]。從本次課改的動因來看,針對我國現行教育體制下的高考選拔制度在很多方面呈現的弊端,新課改力圖在一定程度上改變這一局面,努力使學習者能夠真正獲得全面的發展。但是,在目前情況下以高考為“指揮棒”的評價體系短期內仍然無法發生質的變化。高中新課改實施以來,部分省份相繼將信息技術課程納入了高考的范疇,以往信息技術課程不受重視的情況逐漸得到了一些改善。然而,高考是否解決信息技術課程評價問題的一劑良藥,進而為人工智能課程的實施及其評價帶來新的希望,目前仍是值得懷疑和思考的問題。特別是當前高考科目已經較多,再增加科目無疑會加重學習者的負擔,且很容易回到應試教育的老路上。
其次,雖然新課程標準中提供了關于課程評價的建議,但是其中的內容仍然比較抽象,可操作性不夠。如在信息技術課程標準的評價建議中,提倡評價主體的多元化,關注學生的個別差異,綜合應用多種過程性評價方式,適當滲透表現性評價的理念,等等。這些內容從理念上來講都是很好的,但是如何在教學實踐中加以操作實施,對一線教師而言仍是不夠明確和難以把握的問題。而且,信息技術課程的每個模塊各有特色,然而課程標準并未就此提供專門的評價建議。因此,一套科學合理、適合人工智能課程的評價體系和方法仍需要教研人員在實踐中不斷摸索總結。
參考文獻
[1] 教育部. 普通高中技術課程標準(實驗) [S].北京:人民教育出版社,2003:9.
[2] 鐘啟泉. 課程論[M].北京:教育科學出版社,2007:207-214.
[3] Fullan, M. & Pomfret, A. Research on curriculum and instruction implementation [J]. Review of education research, 1997, 47(1).
[4] Snyder J.B. & Zumwalt K. Curriculum implementation [M]. In Jackson P. W. (Ed).Handbook of Research on Curriculum. New York: Macmillan Publishing Company, 1992.
[5] 珠海教育信息網. 廣東省普通高中信息技術課程標準教學指導意見 [DB/OL].
[6] 顧建軍等.技術課程標準(實驗)解讀[M].武漢:北教育出版社,004:9.
人工智能課程教學范文5
關鍵詞:人工智能;單片機原理及應用;CAI軟件;自主學習
中圖分類號:G642.3 文獻標志碼:A 文章編號:1674-9324(2016)45-0268-03
一、引言
《單片機原理及應用》是自動化、電氣工程及其自動化、測控技術與儀器、等專業的核心課程。隨著電子技術的飛速發展,單片機系列、型號、功能等也不斷地更新換代,涌現出了許多《單片機原理及應用》方面的優秀教材和著作[1-3],由于單片機的快速發展和廣泛應用,促使許多教師在教學內容、方法及實驗方面進行了大量的探討和研究,如“微課程教學”、“MOOC教學”等應用已取得了較好的教學效果[4-8]。然而,人工智能技術應用于教育領域目前仍處于初始研究和探索階段,其應用前景廣闊,具有重要的理論研究意義和實際應用價值。
基于“人工智能”中的“專家系統技術”,研究設計《單片機原理及應用》課程新型教學平臺的總體構架,研究課程知識的表述模型和知識獲取的推理算法,建立知識表述規則集和構建專家系統知識庫,以實現:
(1)學生可以自主學習,基于知識樹規則方便地獲取該課程的全部知識點,學生隨時提出的問題,均可及時獲取答案;學生可及時獲取單片機發展的新知識以及新的應用領域成果;
(2)教師高效處理、分析和制作課程知識點信息,并將其進行規則表述,同時可對知識庫進行不斷的更新;隨時可對課程的知識點進行增添、刪除和修改,基于互聯網技術獲取新型單片機原理及相應的應用知識,不斷更換新課程的教學內容;
(3)基于互聯網技術實現教師與學生之間的互動教學和學生與學生之間的協同學習;基于教堂教學、電子課件、動畫、視頻等多媒體手段,以創造大規模、大數據、跨時空的學習模式。
目前,在教育領域,基于人工智能研究的知識模塊化表述和推理機制構成的專家系統是人工智能的代表之一,基于人工智能-專家系統在高密度、大規模的知識數據庫上模擬人類的信息處理和決策過程,因此智能化的專家系統具備了教育功能、自學習功能、咨詢功能及自適應功能等,將其應用于教育領域潛力巨大、用途廣泛、快速高效。
本文研究了《單片機原理及應用》CAI軟件的研制方法,采用MS Visual Studio 2012作為開發環境,結合人工智能技術,實現了智能搜索算法,達到了自主學習與自動答疑的目的。
二、《單片機原理及應用》CAI系統設計
為了提高本科生的教學質量,基于人工智能-專家系統技術研究《單片機原理及應用》課程的教學內容和教學方法改革措施,并可將其研究成果推廣應用于自動化類專業相關課程建設;培養學生掌握本課程的基本原理和應用知識,引導其自主學習以提高分析問題能力、解決問題的能力及創新能力,實現學生與老師之間的互動,實現教學內容的不斷更新和教學方法的不斷完善。
(一)《單片機原理及應用》課程總體設計
分析目前本課程的教學內容和方法的局限性,提出《單片機原理及應用》課程教學內容和教學方法改革的總體方案。目前,普通高校《單片機原理及應用》課程所用教材的目錄大致如圖1中的實線部分所示。虛線表示可即時修改其中的相關內容。
(二)課程知識本體的表達模型
知識的表示對專家系統來說至關重要。知識本體的表述包括事物、個體和對象等,研究其規則、過程和函數,構成應用程序所表述的知識內容,可以作用于表述各種對象類,具有普遍性和通用性。其表達方式如圖2所示。
(三)基于人工智能技術的課程教學內容和教學方法結構設計
專家系統結構一般有六部分:知識庫(Knowledge Base)、數據庫(Data Base)、推理機(Inference Engine)、解釋子系統(Explanatory System)、人機接口(Man-machine Interface)和知識獲取子系統(Knowledge Acquisition)。教學專家系統的基本結構如圖3中的實線部分所示。
①知識厙:用于存儲專家系統知識。主要用于收集和存儲某領域教師、專家的經驗,知識及書本知識、基本常識等。包括事物的表達方式,可行操作、事實和規則等;
②綜合數據庫:綜合數據庫又稱總體數據庫或全局數據庫,主要用于存放有關問題求解的假設、初始數據、目標、求解狀態、中間結果以及最終結果;
③推理機:推理機是專家系統的核心部分,用于模擬專家的思維過程、控制、協調整個專家系統的工作,它根據用戶所提供的初始數據和問題求解要求,運用知識庫中的事實和規則,按照一定的推理方法和控制策略對問題進行推理求解,并將產生的結果輸出給學生;
④知識獲取子系統:在構建和維護知識庫時作為專家系統和教師、領域專家、工程師等的接口;
⑤解釋子系統:解釋機構由一組計算機程序組成,它對推理給出必要的解釋,并根據學生問題的要求做出相應的回應,最后把結果通過人機接口輸出給學生;
⑥人機接口:學生、專家系統和教師、領域專家、工程師之間溝通的媒介,它把相互之間的交互信息轉換成彼此都能夠理解的形式,由一組程序及相應的硬件組成,用于完成I/O工作。
三、CAI軟件實現過程舉例
《單片機原理及應用》課程CAI系統主界面如圖4所示。點擊“進入系統”之后,將出現“課程內容學習”和“知識點概述游覽”兩部分。
(1)“課程內容學習”部分包括“教材知識學習”、“課堂PPT內容講解”以及“實驗教學內容”等,例如目前常用的單片機的類型如圖5所示。本課程的主要設計和創新實驗如圖6所示。
(2)“知識點概述游覽”部分包括:
①知識點獲取方式:即通過引導操作可得到關聯性強的知識點解釋、關聯性中等的知識點解釋以及關聯性弱的知識點解釋;
②問題解答方式:學生可根據自己的學習情況查詢問題的基本答案(即對問題的解釋),若基于專家知識庫無法解釋所提的問題,則可將該問題提交給任課教師,任課教師會盡快對該問題給出解答;
③專家庫知識更新方式:隨著單片機類型、結構、接口技術以及開發方式等的不斷發展,本課程的知識結構和內容的更新也要求同步進行。因此,專家知識庫信息的更新工作可由任課教師來完成,但是更新信息可來源于文獻資料查閱、企業行業應用領域調研以及實踐實驗教學過程總結等。
課程教材與上課PPT和實驗內容具有相關性,在實際教學中也要求其具有一致性,如圖1中虛線部分表示可即時修改相關的內容。
四、結論
本文將人工智能-專家系統技術應用于《單片機原理及應用》課程的教學內容和教學方法的改革方案,構建新型教學平臺。采用《單片機原理及應用》課程知識的綜合表達方式,并研究課程知識的推理機制。基于文獻資料查閱、企業行業應用領域調研以及實踐實驗教學過程總結,實現《單片機原理及應用》課程教學內容快速更新,實現該課程的智能化和網絡化教學。
在教學過程中,實現學生與老師之間的互動,實現學生和老師之間知識的共享,達到學生能夠自主學習和老師能夠及時了解學生學習情況修改補充教學內容的目的。針對“知識庫”、“綜合數據庫”以及“推理機制”實現在線綜合更新方法?!秵纹瑱C原理及應用》是自動化、電氣工程及其自動化、測控技術與儀器、等專業的核心課程,目前,將人工智能-專家系統技術應用于高等學校該課程的教學,對于提高教學質量,激發學生的學習積極性和增強學生自主學習的能力具有重要的理論研究意義和很好實際應用價值。
參考文獻:
[1]何立民.MCS-51系列單片機應用系統設計[M].北京:北京航天航空大學出版社,1995.
[2]李華,孫曉民,李紅青.MCS-51系列單片機實用接口技術[M].北京航天航空大學出版社,1995.
[3]張毅剛,彭喜元,彭宇.單片機原理及應用(第2版)[M].北京:高等教育出版社,2010.
[4]周冠玲,馮占英,李戰.“單片機原理及應用”課程教學改革的探討[J].中國電化教學,2012,(6):105-107.
[5]趙月靜,陳繼榮,張永弟.單片機原理及應用課程創新實踐教學改革[J].實驗技術與管理,2013,30(1):176-179.
[6]李冰.單片機原理及應用課程的項目化教學改革與探索[J].教學研究,2015,38(1):70-73,82.
人工智能課程教學范文6
2016年1月,美國佐治亞理工學院計算機學院的教授AshokGoel,借助IBM的Watson人工智能系統創建了一個在線機器人JillWatson,并將其作為課程教學助理。其目的是幫助教師回答學生通過在線論壇提出的大量課程問題。通過幾個月的反復調試,JillWatson的回答已經能夠達到97%的正確率?,F在,機器人助教已經可以直接與學生溝通,不需要真人助教的幫助。這項人工智能在教育中的使用,解決了AshokGoel教授的助教人數不夠,難以及時回答學生提問的困境,增加了學生參與在線學習的興趣,提高了在線學習的留存率。
這只是人工智能在教育領域的小試牛刀。雖然有專家預測在未來十年內不會看到人形機器人替代教師進入課堂,不過地平線報告2016年基礎教育版和2107年高等教育版都預測未來五年內人工智能將會在教育行業普及。
教育行業已有的人工智能研究和應用
Woolf等人在2013年提出了人工智能在教育領域應努力解決“五大挑戰”:①為每一個學習者提供虛擬導師:無處不在地支持用戶建模、社會仿真和知識表達的整合。②解決21世紀技能:協助學習者自我定位、自我評估、團隊合作等。③交互數據分析:對個人學習、社會環境、學習環境、個人興趣等大量數據的匯集。④為全球課堂提供機會:增加全球教室的互聯性與可訪問性。⑤終身學習技術:讓學習走出課堂,進入社會。
過去十年,一些研究者對人工智能在教育領域中的應用做了大量的探索。相關的研究成果包括:①跟蹤學習者的思維步驟和解決問題的潛在目標結構(Anderson等,1995);②診斷誤解和評估學習者的理解域(VanLehn,1988);③提供及時的指導、反饋和解釋(Shute,2008);④促進高效學習的行為,如自我調節、自我監控和自我解釋(Azevedo&Hadwin,2005);⑤以合適的難度水平和最適當的內容來規劃學習活動(VanLehn,2006)。
這些研究,基本上使用到了人工智能的每一項技術——自然語言處理、不確定性推理、規劃、認知模型、案例推理、機器學習等?!爸悄軐熛到y”就是基于這些研究和技術而開發的人工智能教育應用。類似的成熟產品包括Tabtor(hellothinkster.com)、CarnegieLearning(carnegielearning.com)和FrontRow(frontrowed.com)。2014年,加拿大西蒙弗雷澤大學的一項試驗發現用智能導師系統的學習者比使用其他教學方法的學習者獲得的成績更高。
人工智能在教育行業的新發展
教育行業的三種類型(內容、平臺和評估)的服務商都在經歷著一場變革。內容出版商面臨紙質印刷到數字出版和開放教育內容的挑戰。學習平臺正試圖區分自適應、個性化和數據分析的功能。評估供應商則繼續探尋從多項選擇題測試轉向更具創新性的問題類型。人工智能將為這三種類型教育服務商帶來新的發展思路和契機,同時也惠及教育生態系統中的所有利益相關者。學生通過即時反饋和指導提高學習效率,教師將獲得豐富的學習分析和個性化指導經驗,父母能夠低成本地為孩子改進職業前景,學校能夠規?;岣呓逃|量,政府能夠提供負擔得起的教育。2017年,人工智能將在以下領域發揮其效益。
1.人工智能批改作業
批改作業和試卷是一件乏味的工作,這通常會占據教師大量的時間,而這些時間本可以更多地用于與學生互動、教學設計和專業發展。
目前,人工智能批改作業已經相當接近真人教師了,除了選擇題、填空題外,作文的批改能力已經大幅提高。美國斯坦福大學已經成功開發出一種機器學習程序,能夠批改8~10年級的作文。隨著圖像識別能力的大幅提高,手寫答案的識別也接近可能。就連占有美國標準化考試60%市場份額的全球最大教育企業——培生公司也認為,人工智能已經可以出現在教室并提供足夠可信的評估。據培生公司近期的報告IntelligenceUnleashed推測,人工智能軟件所具有的廣泛的、定制的反饋能夠最終淘汰傳統測試。
2.人工智能實現一對一輔導
自適應學習軟件已經能為學生提供個性化學習支撐。據2011年VanLehn的一項研究發現,人工智能在某些特定主題和方法上比未經訓練的導師更具有效性。進一步的研究發現,人工智能導師能在學生出錯的具體步驟上給予實時干預,而不是就整個問題的答案給予反饋(Corbett&Anderson,2001;Shute,2008)。
自適應學習在拉美地區正在興起。AndréUrani市政學校的學生使用人工智能軟件Geekie觀看在線課程(視頻和練習)。Geekie為學生提供每一步的實時反饋,并隨著學習的進展來傳授更為精細的課程內容。
早在1984年,本杰明·布盧姆的研究就提出一對一輔導能帶來更好的學習效果。而人工智能技術可以模擬一對一輔導,以更好地跟蹤、適應和支持個體學習者。這將是人工智能在教育中更高層次的個性化學習應用。例如,比爾·蓋茨看好的人工智能聊天機器人或個人虛擬導師,能在學生面臨挑戰時提供強有力的支持,隨時隨地回答學生的提問;還可以為學生訂制學習方案和規劃職業發展路徑,并引導學生走向成功。更重要的是,人工智能可以匹配聊天機器人或虛擬導師的面孔和聲音來滿足學生個人喜好。對比網頁界面的自適應學習系統,這才是真正做到了一人一導師。
3.人工智能關注學生情感
2016年地平線報告高等教育版把情感計算列為教育技術發展普及的重要方向。也就是說,人工智能不僅限于模擬人類傳遞知識,還能通過生物監測技術(皮膚電導、面部表情、姿勢、聲音等)來了解學生在學習中的情緒,適時調整教育方法和策略。例如,機器人導師捕捉到學生厭煩的面部表情時,就可以立即改變教學方式努力激發他們的興趣。這種關注情感的人機交流為學生營造一個更真實的個性化學習環境,更好地維持了學習者的動機。美國匹茲堡大學開發的AttentiveLearner智能移動學習系統就能通過手勢監測學生的思想是否集中。突尼斯蘇斯國家工程學院的研究人員正在研究開發基于網絡的人工智能教學系統。該系統能夠識別學生在任何地方開展科學實驗的面部表情,以優化遠程虛擬實驗室的教學過程。
進一步的研究發現,人工智能還可以關注學生的心理健康。當前已經有使用人工智能來為自閉癥兒童提供有效支持的案例。例如,倫敦知識實驗室在Topcliffe小學開展試驗,讓自閉癥學生與半自動虛擬男孩安迪開展互動交流,研究人員發現患有自閉癥的學生在社交能力方面有進步。
4.人工智能改進數字出版
教科書等課程材料并非總是完美,傳統印刷出版讓課程的修訂變得過于緩慢。這不僅是生產工藝的問題,更主要的是紙質課程材料無法快速獲取使用者的反饋來識別缺陷所在。而數字化出版在人工智能的支撐下能徹底改變這一現狀。
人工智能可幫助使用者快速識別課程缺陷。大規模網絡開放課程Coursera的提供者已經將這一想法付諸實踐。當發現大量學生的作業提交了錯誤的答案時,系統會提示課程材料的缺陷,進而有助于彌補課程的不足。
另一項人工智能在數字化出版的應用是自動化組織和編寫教材。這是基于深度學習系統能模仿人類的行為進行讀和寫。ScottR.Parfitt博士的內容技術公司CTI就依據這項技術幫助教師定制教科書——教師導入教學大綱,CTI的人工智能引擎能自動填充教科書的核心內容。
隨著自然用戶界面和自然語言處理在人工智能領域的成熟應用,課程材料的數字化出版也會有更新的形態——不再局限于書本或網頁的形式,聊天機器人和虛擬導師將成為內容表達的更好的方式。
5.人工智能作為學生
多年的研究表明,教會別人才是更好的學習,即learning-by-teaching。美國斯坦福大學教育學教授DanielSchwartz正基于這一理念來開發新的人工智能產品。他聯合了多個領域的專家一起開發了人工智能應用——貝蒂的大腦(Betty’sBrain),讓學生來教貝蒂學習生物知識。試點研究發現,使用這一方法來學習的學生比其他學生成績更好,且在科學推理上也更勝一籌。
類似的研究和開發還有瑞典隆德大學的TimeElf和美國卡內基梅隆大學的SimStudent,這兩個人工智能產品也是基于learning-by-teaching而開發,讓學生在教會機器人知識的過程中深化對知識的理解。
另外,人工智能還推動其他教育方法和技術更好實現。如讓虛擬現實學習環境更具沉浸感;給學生帶來更多動手實踐的機會;提供基于豐富學習分析的仿真和游戲化學習場景等。