如何開展人工智能教育范例6篇

前言:中文期刊網精心挑選了如何開展人工智能教育范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。

如何開展人工智能教育

如何開展人工智能教育范文1

一、人工智能

人工智能(Artificial Intelligence,縮寫為AI),是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智能是計算機科學的一個分支,它試圖了解智能的實質,并生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。養老服務業人工智能的應用主要體現在家居掃地機器人、語音溝通服務、家庭體檢、藥物使用建議、家居廚師、家居智能陪伴服務。

二、養老服務人才培養“人工智能化”

人工智能上升為國家高級戰略后,國家發展服務性制造和生產性制造,同時盡可能的通過服務業的再造和完善,改進我國經濟產業結構,發揮技術、人才、產業的對接聯動效應。人、機器、智能機器將共生共存,成為養老服務工具的新常態。未來的養老服務人才不是笨干、累干、苦干,而是實干+巧干,實現腦力勞動的智能機械化,盡可能地減少人力的倦怠感,提高服務效率、質量和速度。智能化,體現在養老服務人才應具備傳播人工智能基礎知識,客觀了解人工智能,有效實現人與機器、智能機器的有效配對組合應用,充分發揮智能機器的保健醫生、保姆、玩伴、老伴、子女多重功能,倡議自養老。

三、人工智能養老服務人才培養模式

(一)廣播電視大學遠程教育模式――音像媒體

配備養生、人工智能國內一流專家,發揮國家音像媒體的作用,將人工智能家居應用的途徑、方式、手段通過網絡微視頻的形式進行普及。發揮社區教育指導中心、社區大學和社區教育學院、社區學校、社區學習站四級社區教育辦學網絡體系的作用,建立社會養老大學,使老年人自己會應用人工智能,減低對子女的時間依賴。

(二)公眾號社會宣傳普及模式――微媒體

國家、企業、社區應建立專題公眾號進行微媒體培訓。從國家層面,要建立人工智能養老服務應用技術發展歷程方面的公眾號;從企業層面,要建立人工智能機器人養老服務應用說明類的公眾號;從社區層面,要基于一些鰥寡孤獨建立社群委托服務型人工智能服務策略的公眾號。

(三)職業技術學院培訓模式――專題高端培訓

目前,人工智能服務還不能完全普及,故而職業技術學院的后備人才首先要建立自我提升的潛意識,此外,職業技術學院自身要引進國內外的人工智能專家,進行家庭陪護、游戲娛樂、醫療、做飯、洗衣、洗漱、保健、鍛煉等多重人工智能方面的高端培訓。

(四)民政部門、老齡委聯合推廣模式――社會傳媒

作為養老服務的主管部門,民政部門和老齡委要利用廣播、電視、報紙、雜志等對人工智能的發展趨勢、前景、作用、功能、效益、方式進行宣傳。民政部門要側重于養老服務的社區組織協調,老齡委要側重于制度、規定、采購人工智能機器方面的政策優惠的制定。

(五)社會民間家政服務組織培養模式――養老院、福利院自組織模式

民間社會力量建立有養老院、福利院,這就對相關服務人員的素養提出了時代性的要求。其一,人的社會角色多,時間、精力、體力有限;其二,人工智能是趨勢,必須適應并學會使用;其三,要加強前瞻性人才培養,解決勞動倦怠問題,即民間組織自己解決自己的問題,通過人工智能,減少雇員,降低勞動力雇傭成本。

四、人工智能養老服務人才培養對策

(一)廣播電視大學養老服務人才培養對策

依托遠程教育系統,發揮網絡平臺的作用,將人工智能的技能培訓與社區教育、社會養老大學的建設并舉;發揮廣播電視大學的社會服務功能,與人工智能機器生產企業搭建戰略伙伴關系;積極推進產培用一體化建設,形成網絡平臺特色模塊;推出廣播電視大學養老服務精品課教程,以優質教育品牌打開培訓窗口。

(二)人工智能機器制造企業養老服務人才培養對策

基于居家養老的社會需求利益取向,把脈居家老人和其子女的時間要求,積極開發、完善人工智能機器的特殊功能,加大資金投入力度,特別加強對情感交互、圖像識別、語音功能的完善;重點做好人工智能機器使用說明,要具有便捷實用性的操作指南,方便人們學習。

(三)職業技術學院養老服務人才培養對策

職業技術學院作為專職教育機構,首先,要提前與職業高中接軌,進行專職意向高中生的錄取,為養老服務人才培養獲取意向生。其次,要突出人才培養的實踐應用性,購置高端智能機器,讓學生能夠迅速掌握技能,并且能夠進行社會的二次培訓,對購置的智能機器進行租賃和應用培訓。

(四)民政部門、老齡委養老服務人才培養對策

民政部門和老齡委要培養高級管理人才,建立養老服務人才智庫,積極推進國家、企業、社會的養老服務人才人工智能化聯動培養;加大對家庭貧困并且有意向致力于養老服務的青年才俊的培養支持力度;對人工智能養老服務高端研發海歸人才給予政策優待;建立城市養老服務專家群組,定期召開學術研討會議,增進智慧交流。

(五)社區養老服務人才培養對策

社區要加強人工智能養老服務人才的典型宣傳,利用宣傳畫的形式傳播人工智能應用的優勢;積極打造人工智能特色服務團隊,開展社區公益性專題培訓,并募集資金購置人工智能機器為特殊群體獻愛心;努力構建人工智能養老社區,采用人工智能的形式鼓勵老年人進行文體娛樂,增強體質。

總的來說,在計算機技術不斷發展的現代社,人工智能技術的普及給養老服務帶來了巨大的便捷。隨之而來的人工智能化養老服務人才的培養成為了發揮人工智能養老服務效用的關鍵環節。要培養人工智能化養老服務人才,可以從遠程教育、社會宣傳普及、學院培訓、政府推廣等模式入手,實現人工智能化養老人才培養模式的多元化。同時,開展遠程教育的過程中運用產品一體化模式,在滿足老人需求的基礎上提升人工智能設備的人性化操作,重點開展職業技術院校的人才培養方式,與民政部門開展緊密合作,積極培養人工智能化養老服務人才。社區方面強化人才的教育宣傳工作,全力搭建人工智能養老社區。

如何開展人工智能教育范文2

人工智能技術的誕生,為人類探索計算機科技、便捷生活展望了美好的前景,提供了豐富的想象空間,在社會科學中的應用廣泛。教育手段革新,需要一種新的技術作為保障和支持。人工智能技術應用的普遍性和網絡教育技術發展的需求性一拍即合,成為一種新的教育發展模式。本文將對人工智能在網絡教育中的應用進行探究。

【關鍵詞】人工智能 網絡教育 具體應用

1 網絡教育模式的發展現狀

1.1 網絡教育的優勢

網絡教育模式是對傳統課堂教育模式的更新與演進,傳統課堂教育模式具有交流便捷、課堂管理方便的優勢,但是也受到空間和時間的雙重限制,需要繳納昂貴的場地和設施費用,難以追趕新時期人們快捷的工作步伐。網絡教育通過互聯網遠程傳遞,在繼承和發展了傳統課堂優勢的同時,彌補了缺點和不足,在虛擬的網絡環境,擺脫了有關時間、空間、身份等諸多限制,促進了教育手段的創新,為人們提供了更多接受教育的機會,促進了國民教育水平的提高。

1.2 網絡教育存在的問題

網絡教育的問題主要體現在以下方面:

1.2.1 操作平臺的局限性

網絡教育登錄界面的首頁,一般包含著課程選擇、成績查詢、習題演練、師資介紹等基本內容,這容易導致眾多網絡教育平臺具有相同的首頁模板和計算機程序,不同平臺、不同學科、不同專業沒能充分體現出其獨一無二的課程特色。操作平臺具有局限性,無法充分體現人性化特色和該課程的特殊化要求。

1.2.2 教學方式的一致性

網絡教學中,一般采用計算機程序設定好的流程,授課、復習、習題演練、期末考試、綜合評估為基本程序,流程化操作,無法根據學生的學習特點和成績要求制定相應的教學方式。教學評價流程過于死板,無法像教師一樣考慮其他綜合因素進行分析,這就容易導致考試系統的公平性、評分的合理性受到質疑,無法體現教學權威性。

1.2.3 服務系統的落后性

網絡教育是以計算機的軟件程序為表現載體,將教學課程和學習方式相融合。隨著知識體系更新換代的不斷加快,學術糾錯的發生,課程及時更新也是十分重要的。但是網絡教育服務系統具有一定的落后性和延時性,傳遞的知識和答疑手段相對落后,影響著網絡教育的準確性和科學性。

2 人工智能在網絡教育中的具體應用

網絡教育缺陷的存在,其重要原因是教育流程系統的“剛性”無法符合學習者不同的教學需求,不懂得如何具體因人而異、因材施教;而人工智能“柔性”的工作特點,可以有綜合考慮各種影響因素,并及時調節,恰好是對缺陷的補充。事實證明,人工智能在網絡教育中的具體應用也取得了較好的效果,主要體現在以下方面:

2.1 專家系統的應用

專家系統是對智能教學系統、決策系統、導學系統以及先進的智能化硬件設備的總稱。傳統的網絡教育是流程化、規范化的,智能化教學系統是對每個流程應用智能化手段,促進教學過程的科學性。

2.1.1 智能決策系統。

在課程開始之前,增設智能決策功能即智能決策系統,類似于學校的入學考試,對學生的學習能力、成績水平、智力狀況進行基本的分析和了解,以學生能力而不是教師要求為教學依據,制定合理的教學計劃和學習方案;通過智能化設計,確定學習成績分階段測試計劃、智力開發方案和考試模擬系統等,通過這些方式,實現對學生能力的充分開發。

2.1.2 智能導學系統

這是通過對學生一定時期學習環境的營造,通過對環境內各影響因素施加措施,為學生的學習提供優質條件。影響因素包括教師、學習資源、外部因素等,一旦學生學習沒有達到預定的目標,教師模塊就會對學生的動態行為做出科學正確的指導,并向正確的學習軌跡糾正;學生學習所需要的參考資料、試卷分析、時事熱點等,會根據學生的學習進展情況及時更新資料庫;學生在學習中遭遇困境,系統會根據智能化發揮引導和提醒功能。

2.1.3 智能教學系統和智能化硬件設備

智能教學系統和智能化硬件設備分別是智能學習系統的軟件和硬件載體。智能教學系統是智能決策和智能導學子系統的綜合,是幾種不同模式的組合與搭配,最終出現適合學生自身的學習模式,并且讓系統關系更加穩固;硬件系統是網絡學習的基礎和載體,包括傳輸設備中的路由器、交換機設備,終端的打印機、攝像頭等。

2.2 其他人工智能系統的應用

2.2.1 語言處理系統

語言處理系統在人工智能領域是一種應用較為廣泛的技術,系統內部擁有錄音模塊、語言識別模塊、轉換模塊和輸出模塊。學生向錄音系統發出聲音,語言識別和轉換模塊將語言轉化為文字顯示在計算機界面上。就目前的技術來說,語言處理系統可以處理簡單口語和書面語言,局限在普通話,隨著語言庫的升級,語言處理系統的功能會越來越強大。這一功能的出現,對學生學習語言口語和減少文字任務有很大的幫助。

2.2.2 知識庫系統

知識庫系統是對知識和數據的整合、匯總和儲存,學生僅依靠記憶中對知識的只言片語和殘損記憶,發揮知識庫強大搜索功能,自動分辨出關鍵詞,并提供完整的數據。這對學生學習記錄的查找和知識的復習有很大幫助,也有助于系統的升級和完善。

3 促進人工智能在網絡教育中應用的具體措施

3.1 加大資金支持

資金支持是發展新科技的堅實保證,政府和相關機構應該重視人工智能在網絡教育發展中的巨大作用,提供政策的優惠和資金撥款,給予場地和設備的支持。有了資金的支持,可以吸引優秀人才開展系統研發和技術升級工作,可以為人工智能的應用提供高性能、高水平、先進的硬件設施保障。

3.2 開展教學實施

應該積極促進人工智能在網絡教育中的教學實施活動,通過一線學習的監測和實驗,推動新技術的普及與應用。在相關專業院校安裝人工智能軟件,也是促進教學實施的有效途徑。

4 結束語

綜上所述,人工智能是一項應用廣泛,可研究性強的計算機前沿技術。通過人工智能相關技術的研究,能夠解決網絡教育中存在的諸多問題,提高學生的學習質量和效率,方便老師的教學管理,以及對教育教學模式將產生深刻影響。

參考文獻

[1]馮佳.虛擬機技術在計算機網絡課程教學中的應用[J].計算機光盤軟件與應用,2011(17).

[2]王世剛,王紀鳳,尚玉蓮,趙學軍.計算機網絡課程教學中的虛擬機技術應用[J].中國現代教育裝備,2011(01).

[3]劉健.人工智能在網絡教育中的應用探索[J]. 計算機光盤軟件與應用,2014(06).

[4]陳建鋒.人工智能及其在計算機網絡技術中的應用[J].城市建設理論研究.2015(03).

作者簡介

侯燕(1981-),女,山東省濟寧市人。碩士學歷?,F為齊魯師范學院講師。研究方向為計算機應用。

如何開展人工智能教育范文3

關鍵詞:人工智能;計算機網絡教學;現狀;運用

中圖分類號:TP393-4

所謂人工智能,就是利用人工方法在計算機上實現智能,也可以說是人工智能在計算機上的一種模擬。人工智能廣泛融合了神經學、語言學、信息論和通訊科學等眾多學科和領域。目前主要存在三條人工智能研究途徑:一是以生物學理論為支撐,掌握人類智能的本質規律;二是以計算機科學為支撐,通過人工神經網絡進行智能模擬,實現人機互動;三是以生物學理論為支撐。

1 人工智能技術的特征

智能技術主要分為兩類,人類和計算機智能,兩者存在相輔相成的關系。利用人工智能技術能夠實現人類智能向機器智能的轉化,相反,機器智能也能夠利用智能教學轉化為人類智能。

1.1 人工智能的技術特征。首先,人工智能具備非常強的搜索功能。該功能是利用相關搜索搜索技術實現對海量信息的快速檢索,滿足個性化信息需求;其次,人工智能具備很強的知識表示能力。具體來講,就是人工智能對信息的行為,能夠像人類智能一樣,對模糊的信息加以表示;最后,人工智能具有較強的語音識別和抽象功能。前者主要是為了對模糊信息加以處理。而后者主要是為了對信息重要度加以區分,以便提高信息處理效率。用戶只需要智能機器提出具體要求便可,至于復雜的解決方案就交給智能程序了。

1.2 智能多媒體技術。首先,人機對話更加靈活。傳統多媒體在人機對話方面極為欠缺,導致教學單調乏味,不能取得預期良好效果,但智能多媒體卻不然,他能夠實現人機自由對話和互動,同時還能結合學生實際對學生的問題給出不同層次的答案。其次,教學可行性更強。由于學生在認知能力和個人素養方面都存在差異,而且學習主動性也不盡相同,人工智能必須要結合學生實際學習狀況,為每一位學生設計制定個性化的學習計劃和學習目標,對學生進行針對性較強的教學,真正實現因材施教。再次,具有強大的創造性和糾錯性。前者屬于人工智能的顯著特征,而后者屬于人工智能的重要表現方面。最后,智能多媒體具有老師特征。在實際教學過程中,智能多媒體可以對教學雙方的行為進行智能評價,以便能夠及時發現教學中的薄弱點,有助于實現教學相長,全面提高教學質量和教學效果。

2 計算機網絡教育的現狀

隨著現代科學的進步,網絡信息的發達,人們的教學觀念和學習觀念都發生了前所未有的改變,網絡時代正全面到來。為了滿足現代社會對人才的實際需求,培養大量現代化優秀人才,計算機網絡教學模式業已成型并不斷完善。目前,高校正規教學模式依然是現代教學主流,盡管在系統傳授知識和規范培養人才方面具有無可比擬的優勢,但在資金投入、效益創收和時空限制等方面具有很大的弊端,靈活性不足,無法有效滿足現代教育的發展要求。

計算機網絡教學對傳統教學形成了巨大挑戰,并產生了深遠影響。它不僅有效彌補了傳統教學的時空限制缺陷,而且賦予了教學極大的樂趣性,吸引了越來越多的人積極投身到網絡教學建設中去,任何人無論何時何地都能夠通過網絡課堂去學習和提高。但目前計算機網絡教學發展仍處于探索期,在實際運用方面還存在許多問題:第一,計算機網絡教學中的學習支持服務體系尚不健全,導學手段和答疑方法還非常落后,由于各種原因,在服務方式上缺乏針對性、策略性和積極性;第二,計算機網絡實驗教學中存在著空間分散、時間流動和自主性差等問題和弊端;第三,計算機網絡的系統承載能力和信息查詢能力還十分有限;第四,如何實現計算機網絡考試的開放性,確??荚嚨目陀^性、公正性、權威性,已經成為網絡教學發展的瓶頸;第五,計算機網絡教學中的核心支撐系統――CAI,還無法有效滿足和適應網絡教學的實際需求和發展要求。

主流CAI課件主要有兩種,一種是單機版的初級課件,包括簡單的Authorware課件、PPT幻燈片和圖文網頁等。一種是高級的網絡版課件。該類課件主要以靜態圖文和動態演示組成的網頁為主,以聊天室、電子郵件和QQ群等形式為輔,實現師生互動、網絡答疑的一種改進型課件。初級課件在實際教學中以操作容易、更新及時和維護方便著稱,但實際上就是傳統教學手段的變相挪用。還有些課件,盡管在互動性方面有著不錯的效果,但是制作繁瑣、更新較慢和維護復雜。因此,高級網絡課件是目前網絡教學中的主流課件,已經成為了計算機網絡課件的固定模板。改進型的網絡課件有效地解決了傳統多媒體在師生互動不足的問題。上述兩類課件是現在最為常見的兩種CAI課件,盡管兩者都有各自的優勢,但作為網絡教學的重要手段,仍存在許多問題和弊端:無法實現因材施教,無法開展層次教學;作為教學的一大主體,學生在個性化交互操作方面仍有很大不足;對學習過程中出現的普遍問題無法進行智能統計、分析和評價等。

3 人工智能技術在計算機網絡教學中的運用

3.1 人工智能多媒體系統。(1)知識庫。智能多媒體已經不再是用來進行紙質媒體數字轉化的工具了,它應該具備相應完善的知識庫,而知識庫里的教學內容要結合教學實際和學生現狀進行針對性、個性化設計。同時,要實現知識庫資源的高度共享,并及時加以更新和補充,如此才能充分發揮知識庫的教學服務作用。(2)教學板塊。教學板塊的設計主要是出于教學綜合性考慮的,教學方法的創新是其關注的重點內容。該模塊的實現要以掌握專業知識、教學策略和人機對話等領域的知識為前提,結合學生實際學習現狀和特點,利用智能系統的現代化技術手段對知識和相關教育措施加以高效搜索。(3)學生板塊。及時掌握學生心理動態和學習狀況是智能網絡教學的一大特征,結合學生實際狀況加以智能評判,進而加以針對性指導和個性化輔導,實現因人施教和因材施教,全面提高學習效率和學習質量。(4)用戶模塊。用戶模塊是智能系統無法忽視和省略的關鍵模塊,整個智能系統的正常運行離不開人工程序操作,用戶需要通過用戶終端將教學內容上傳到網絡教學平臺,才能順利完成教學。

3.2 人工智能多媒體教學的發展。(1)加強與網絡的結合。隨著網絡技術的成熟,智能網絡教學與網絡之間的關系日益緊密,多元化、多維度網絡空間日益成為一種趨勢?;ヂ摼W具有信息量大、更新速度快、超時空性等優勢,加強與網絡的結合是人工智能計算機網絡教學未來發展的重要方向。(2)加強智能的應用。人機對話、機器指導的教學模式將成為未來網絡教學的核心模式,傳統教師的角色將逐漸被計算機取代。最為典型的就是現代智能導航系統。(3)加強系統軟件的研發。系統軟件的更新日新月異,舊的系統軟件已經無法有效滿足網絡發展的時代要求,加強系統軟件的研發以便充分滿足網絡要求,更好地幫助學生解決實際問題,進而提高學習效率和教學質量。

4 結束語

人工智能技術在計算機網絡教學中的運用將為現代化教育提供新的發展思路,將全面改善網絡教學環境,拓展學習服務渠道,提高計算機網絡教學質量,并有可能徹底打破計算機網絡教育的時空限制,全面加強網絡教學的開放性,實現網絡學習的個性化、人性化和智能化,充分落實以學生為本的教學理念。未來CAI技術的進一步成熟將全面提高網絡教學的整體格局,我們有理由相信,智能網絡教學將迎來全新的發展春天。

參考文獻:

[1]劉廣鐘,高軍,劉,李吉彬.報文分析技術在計算機網絡教學中的應用[J].計算機教育,2014(01).

[2]趙冉,朱西方.仿真技術在高職計算機網絡教學中的應用探討[J].河南科技,2014(01).

如何開展人工智能教育范文4

關鍵詞: 人工智能;創新驅動;發展建議

人類對于智能機器的探索活動,古已有之。不過,以“人工智能”來命名這一探索并成為一個學科領域,卻發生于1956年夏季在Dartmouth舉行的一次小規模學術研討會上。因此,2016年是人工智能學科問世的60周年,在這個不同尋常的年份,世界各地的人工智能科技工作者都在密切關注人工智能的發展動向。

2016年3月,DeepMind研制的人工智能圍棋系統AlphaGo以4:1的戰績擊敗了韓國的圍棋高手李世石,把世界對人工智能的關注推向了前所未有的。各種各樣的議論噴涌而出。悲觀者大呼:“人工智能對于人類的潛在威脅太嚴重,應當通過立法限制甚至禁止人工智能的研究”;樂觀者高喊:“人工智能是人類的真正福音,只要把自己的思想意愿轉嫁給人工智能機器,人類就可以通過機器來實現長生不老的千年夢想”。在科技界,人們則在激動著、討論著:我們應當在什么樣的熱點技術上發力?是深度學習?是認知技術?還是類腦計算?

回想這些年來,互聯網、云計算、大數據、物聯網、移動互聯、智能制造、智慧城市、人工智能、機器人一波又一波的高新技術登臺亮相,中國科技界、教育界和產業界都在一個個地緊緊追趕。雖然在跟蹤追趕的過程中取得了不菲的進展,但是人們不禁都在思考:對于人工智能來說,當前社會的需求是什么?什么才是有效的創新戰略?怎樣才可以擺脫跟蹤追趕的被動局面,爭取到引領創新的話語權?

發展人工智能不應當是一種孤立性、局部性的行動,而應當是能夠帶動和引領整個科學技術的創新和發展。

1 人工智能是當代重要交叉科學群的創新前沿

為了闡明“人工智能是當代重要交叉科學群的創新前沿”這個論斷,需要逐個澄清相關的基本概念,包括:什么是人工智能?什么是當代的重要交叉科學群?以及什么是當代重要交叉科學群的創新前沿?

1.1 什么是人工智能

人工智能是一門“探索人類智能機理,創制人工智能機器,增強人類智力能力”的科學技術。從這個意義上可以理解,只要人類的智力能力得到了增強和擴展,人們從事各種科學技術以至各種經濟社會活動的智力能力就會得到有效提升,從而能夠有效促進各行各業的創新與發展。

那么,什么是人類智能?人類智能主要表現在人類主體為了不斷改善生存發展的水平而發現問題、定義問題、解決問題的能力。其中,發現問題和定義問題的能力依賴于主體的目的、知識、直覺、理解力、想象力、靈感、頓悟、審美等內在能力,因此被稱為“隱性智能”;解決問題的能力則主要依賴于獲得信息,生成知識,創生策略等外顯能力,因此被稱為“顯性智能”。

顯然,隱性智能十分抽象,幾近神秘,不僅研究起來甚為困難,就連理解起來也頗感玄奇,而顯性智能則相對可理解,可研究。因此,人工智能研究遵循的原則是:基于人類主體給定的問題、知識、目標(這就是人類發現問題和定義問題的能力)這些前提,研究如何利用信息、生成知識、創生策略來解決問題,達到目標。也就是說,人工智能的研究遵循人類智能與人工智能相結合的原則:人類智能負責發現和定義問題,人工智能則負責在人類所給定的問題框架下解決問題。這樣,人工智能機器就可以成為人類認識世界和改造世界的聰明助手。

由此可見,沒有生命,沒有目的,沒有靈感,也沒有審美能力的人工智能機器系統,原則上不具有隱性智能的能力,因而不可能獨立地發現問題和定義問題,只能在人類所發現和所定義的問題框架下去解決問題。因此,人工智能超越人類的恐懼缺乏科學根據。

1.2 什么是當代重要的交叉科學群

當今的時代是信息時代,認識信息資源和利用信息資源為人類服務的信息科學是當今時代的標志性科學。具體來說,信息科學是“研究信息的性質及其運動規律的科學”,也就是以信息為研究對象,以信息的性質及其運動規律為研究內容,以信息科學方法論為研究指南,以增強和擴展人類信息功能(全部信息功能的有機整體就是人類的智力功能)為研究目標的科學。換言之,信息科學的研究目標就是擴展人類的智力功能,而研究信息的性質及其運動規律和信息科學方法論都是為了實現擴展人類智力功能這個目標服務的。

由此就可以清楚地理解:人工智能的研究是信息科W的最高目標,也是信息時代科學技術發展的基本目的;而為了使人工智能系統能夠在人類發現和定義的問題框架下成功地解決問題,人工智能的研究必須從人類求解問題的能力中得到啟發。這表明,人工智能的研究需要向認知科學學習,因為認知科學就是研究人類自己是如何面對問題解決問題的。另一方面,認知科學所研究的人類解決問題的機理又建立在腦科學的基礎之上,因此,人工智能的研究必須理解腦科學的工作機理。再者,人類發現問題、定義問題、解決問題的能力并不是永遠固定不變的,而是不斷進化和發展的。因此人工智能的研究還必須學習信息生物學,后者深刻地研究和揭示了人類能力不斷進化的機制??梢?,腦科學、認知科學、信息科學、信息生物學、人工智能是當代最具重要意義的交叉科學群。這個科學群還包含更多的學科,恕不一一闡述。

1.3 什么是當代重要科學群的創新前沿

雖然腦科學、認知科學、信息科學、信息生物學、人工智能各有各的研究內容,但是所有這些學科共同的目標都是智能,如人類的智能(腦科學)、生物的智能(信息生物學)、人類智能的物質基礎(腦科學)、人類智能和生物智能的工作機理(認知科學)、人類智能和生物智能的進化機制(認知科學與信息生物學)、人類智能的信息基礎和研究方法論(信息科學)、人類智能的機器模擬和實現(人工智能)等。

所以,人類智能和人工智能是當代這一重要交叉科學群共同的創新前沿。人們對于腦科學、認知科學、信息科學、信息生物學的理解深化了,就會促進人工智能研究的發展;反之,一旦人工智能的研究取得了突破和創新,也必然能夠帶動腦科學、認知科學、信息科學、信息生物學的突破與創新。

2 中國人工智能發展的現狀:差距與優勢

中國人工智能的發展現狀,大家平日都親身感受得到,應當比較熟悉,似乎無需贅言;但是國情是我們思考問題的基礎,因此不可不察。而且,我們對于中國在人工智能發展方面所存在的差距和優勢的認識,確實還有必要進一步深化。

2.1 差距:顯差距,隱差距

大家都意識到,中國在人工智能的發展方面確實存在不少的差距。普遍J為,由于中國缺失了工業革命這個歷史階段的洗禮,因此在工業基礎和工藝水平方面天然存在明顯的不足。特別是中國微電子工業領域的高性能芯片制造能力有待進一步加強,人工智能硬件系統的水平也有待進一步提高等,這些都是眾所周知的顯差距。

然而,更值得深思的問題是:在人工智能的科學研究方面,長期以來,中國同行普遍習慣于跟蹤學習,缺乏突破創新的民族自信心,更缺乏引領國際的強烈意識。無論是互聯網、物聯網、語義網、云計算、大數據、移動互聯這些大概念,還是深度學習、無人駕駛、類腦計算這些技術思想,都是外國學者率先提出,然后才是中國學者蜂擁而上。加上這些年滋長蔓延起來的急功近利和學術誠信缺失,往往在蜂擁而上之后的一夜之間就會冒出許多“新成果”!這是中國人工智能發展存在的隱差距。

需要指出的是,顯差距正因為“顯”,已經得到各有關方的高度重視,并且正在不斷地被縮小;但是,隱差距則因為“隱”,不容易被察覺,至今還沒有引起各方面必要的重視,因此仍然是實現突破創新和引領戰略的隱患。

2.2 優勢:現優勢,潛優勢

那么中國在人工智能研究中是否也存在什么優勢呢?表面看來,似乎中國在人工智能研究領域一直處于跟蹤學習狀態,談不上存在什么優勢;但是仔細考察發現其實不然,中國在人工智能研究中的確存在不可忽視的優勢。

中國目前雖然在整體上還處于相對落后狀態,但在某些技術研究上卻處于國際領先地位。例如:語音識別技術,中國已經在近期多次國際評測大賽中奪得世界冠軍;在汽車自動駕駛方面,中國的研發水平也與國際上旗鼓相當;特別是在理論研究方面,中國在人工智能通用理論研究方面的機制主義人工智能理論、人工智能邏輯理論研究方面的泛邏輯學、人工智能數學方面的因素空間理論都是國際領先的成果。這些都是已經涌現出來的現優勢。

更加重要的是,像人工智能這樣既十分復雜又極其深刻的科學研究,勢必自覺或不自覺地受到科學方法論的影響。幾十年來,國際人工智能的研究形成三大學派,就是受了以分而治之為特征的機械還原方法論的影響,把復雜的人工智能研究分為結構模擬的人工神經網絡學派、功能模擬的物理符號系統學派、行為模擬的感知動作系統學派,而且長久以來互不認可,不能形成人工智能研究的合力??茖W論證充分表明,適于人工智能研究的科學方法論不是“機械還原論”的方法論,而應當是“信息生態論”的方法論。后者與中國歷來的“整體論”和“辨證論”思維傳統息息相通。因此,在人工智能的研究領域,中國握有方法論的潛在優勢(潛優勢),只要自覺地加以運用,這種潛在優勢完全可以轉化為強大的現實優勢(現優勢)。

3 人工智能的社會需求和發展中國人工智能的戰略建議

3.1 人工智能的社會需求

中國的信息化建設全面啟動于20世紀90年代,得益于現代信息技術的支持,取得了舉世矚目的輝煌成就,進入了迎接復雜問題的新時期,面臨著巨大挑戰。從整個經濟社會發展和全面改革的大局判斷,在多次講話中也明確指出,中國的改革開放進入了攻堅克難的深水區。眾所周知,人工智能技術是信息技術的高端前沿;因此,為了迎接復雜問題的挑戰,為了成功走出深水區到達勝利的彼岸,中國亟需人工智能科學技術的全面支持。

另一方面,縱觀當今的國際環境不難發現,一些發達國家在中國黃海、臺海、東海、南海不斷制造緊張局勢,企圖以武力遏制中國的和平崛起。他們聲稱要長期投資人工智能,要用人工智能武器戰勝中國,對此不能不高度警惕,并采取果斷措施。

3.2 加快發展中國人工智能的建議

為加快發展中國人工智能,從戰略性、系統性、可操作的角度出發提出5項建議。

(1)頂層規劃。

火車跑得快,全靠車頭帶。建議設立國家級智能科學技術發展規劃與協調專家委員會,負責研究和提出中國智能科學技術發展的中長期規劃,制訂智能科學技術產學研發展的實施政策,協調和促進中國智能科學技術的快速有序健康發展。

(2)人才培養。

萬事都緊要,人才是根本。建議國務院學位委員會把中國現有的“智能科學與技術”二級學科提升為一級學科,以形成系統完整的智能科學技術人才培養體系;同時建議教育部在中小學開設智能科學與技術基礎知識課程,開展課外興趣培育活動。

(3)創新研究。

跟蹤不可廢,創新更關鍵。在國家自然科學基金設置“智能科學技術基礎理論”專門領域,大力推進智能科學基礎理論的突破創新;同時在國家“十三五”規劃設立智能制造、智能農業、智能服務業、智能交通、智能網絡空間安全、智能教育等應用專項。

(4)產業標準。

創新是尖兵,產業是后盾。大力促進中國智能化產業的發展,并在國家標準委員會建立智能產品標準工作委員會,鼓勵有條件的單位和學術團體開展各類智能技術產品的測試、評價和檢驗標準的研究,引導智能化產業和產品市場有序健康發展。

(5)持續發展。

如何開展人工智能教育范文5

關鍵詞:人工智能;案例教學;應用

1引言

作為計算機科學技術的全新領域即人工智能,其正在迅速成長與成熟、新方法、新理念、新技術并且不斷壯大,同樣也包含著計算機網絡、數學、信息論各類學科的交叉和邊緣學科。人工智能包含的主要內容有知識表示和推理機制、問題求解和搜索算法,自然語言理解、專家系統和機器學習等;也作為計算機科學各專業重要的基礎課程,國內外各高校都非常重視,都將人工智能作為計算機專業的必修課程。人工智能包含的學科多,知識點雜、理論性強、內容抽象,算法難度高復雜,在此情況下各高校采用傳統的“教師講、學生聽”單一教學模式,學生處于被動學習地位;課堂教學與實際操作、理論與現實應用相脫節;加上理論知識強,案例缺乏,容易使學生感覺空洞;學生易產生厭學情緒,也達不到鍛煉其分析問題、解決問題的思維能力和實踐動手能力。如何讓學生高效的學習一直是教師研究的課題,在大數據和網絡信息時代的大背景下,“互聯網+”已經廣泛應用和存在于生活、工作各個方面,其在教育教學中表現出的創新性、互動性尤為突出,并極具優勢。

2基于案例的教學研究

此方法開始于上世紀20年代左右,最早是由美國哈佛商學院所提倡的,基于當時特殊的商業管理真是背景和特殊事件,能夠有效的發展和培養學生主動性、積極性和應用能力,開展案例教學后,學生實際解決問題能力有了很大的提高。但此教學研究方法知道到上世紀80年代后期,才引起教師的重視。1986年由美國研究小組提出《準備就緒的國家:二十一世紀的教師》書中,強烈推薦此方法在實際教學的重要性,并說明今后在教學過程中將其作為一種重要的教學方法應用于各類課程中去。

3基于人工智能的案例教學研究及應用

3.1案例精選

此方法第一步是案例選取,案例的好壞是決定案例教學效果關鍵因素。案例的選取需要滿足以下要求:(1)符合現在的教學目標,明確學生需要掌握的知識點、重難點等,能夠運用所學的理論知識應用到實際中,以此提高學生分析、解決問題的能力;(2)案例要有代表性、趣味性,由于人工智能課程內容多、抽象,需要將枯燥乏味的知識點轉化為趣味生動的案例,有利于吸引學生注意力,激發學習興趣和主動性;例如,講到“知識表示”這部分內容中引入“機器人搬積木”、“野人修道士渡河”案例;(3)采用互動的形式,此為人工智能的案例教學研究重要特征,同時也是教學目標得以充分展現的必要條件。能夠調動大家的積極性,學生和學生之間、學生與教師之間的互動,調動學生的主觀能動性。

3.2案例的執行

(1)講授法。基于教學內容具體知識點設計案例;通過教師講解,幫助學生理解抽象的理論知識。案例的呈現有兩種基本形式:一是“案例—理論”,即先給出教學案例,后講解理論知識;二是“理論—案例”,即教師先講解知識,再給出教學案例;案例的呈現方式不同,會直接影響案例的功能,也會影響到學生的學習情緒、學習效果。為了使案例能更好地為教學服務,教師講解案例之前應從創設案例情境開始,通過情境體驗與案例剖析激發學生認知的興趣,引導學生對將要學習的內容產生注意,有利于教師導入新課。(2)互相討論法。大學生課余時間充沛,鑒于此,將班級學生分為若干小組,教師將事先準備好的案例分配給各組,學生采用組內互動討論的形式,設計出此案例的各種解決方法。課堂上,將本小組的解決方法用課件展現給其他小組。講解完成后,學生開始互相討論,對比各自的方法,然后由老師進行分析、對比和總結。以此來增強學生對學科知識點、應用能力的掌握。(3)相互辯證法。課后,采用相互辯證的方法,組織大家相互辯論。選擇一些綜合應用比較強的案例。與簡單的案例相比,綜合應用案例能更加高效地啟發學生全方位地思考和探索問題的解決方法。相互辯證法是一種探索新型的教學形式,學生的自主性強,能夠在辯論中充分表達自己的觀點,充分運用所學的理論知識來維護自己的觀點,還可以促使學生查閱大量資料,拓展知識面。

4結語

通過以上論述,人工智能技術開始應用于教學,與教學現代化有著密切的聯系。其發展必將對現代教育起巨大推動作用。在教學,可以基于人工智能技術建立人類推理模型學習工具等諸多的運用,展示出越來越好的實用性。

參考文獻:

[1]鄒蕾,張先鋒.人工智能及其發展應用[J].信息網絡安全,2012(02).

[2]陳柯蒙,張寧.人工智能的發展探析[J].新西部(理論版),2012(05).

[3]陳浩磊,鄒湘軍,陳燕,等.虛擬現實技術的最新發展與展望[J].中國科技論文在線,2011(01).

如何開展人工智能教育范文6

[關鍵詞]臨床培訓;手術室外麻醉;教育

近年來,隨著手術種類的變化,麻醉醫生的工作環境,從熟悉的手術室內,發展成為手術室外多環境工作模式,如放射科、胃腸鏡、氣管鏡、心內科介入、兒科和急診復蘇等[1]。特別在老齡化發展趨勢下,麻醉醫生面臨更多壓力,老齡患者需要在手術室外麻醉(nonoperatingroomanesthesia,NORA)下完成微創或無創診斷檢查以及手術。與傳統手術過程不同的是,越來越復雜的手術需要在NORA下完成。同時,麻醉醫生需要在NORA下處理許多急診或緊急不穩定患者。當代NORA情況下,麻醉住院醫師需要快速適應新的工作環境,利用有限的資源,最短時間內為患者提供優質的麻醉,完成診斷性和治療性手術過程[2]。

1NORA設施和應對

NORA需要的設施包括:廢氣排除系統的麻醉機、監護儀器、可靠的氧源、負壓吸引裝置、手動復蘇球囊、應急電源系統、患者的詳細信息、有效充足的空間、帶有除顫儀的急救車和可靠的雙向通信系統[3]。NORA的核心目標是建立與手術室內同水平和標準的工作環境。由于NORA的麻醉風險較高,麻醉醫生需要認真管理患者,避免并發癥和不良事件的發生[3]。NORA環境下住院醫師教學包括:患者情況比較復雜,采用急診患者標準準備;工作環境不熟悉;儀器設備及藥物不如手術室內齊全;圍術期并發癥發生率更高。因此,住院醫師在NORA下應認真按照工作流程進行麻醉工作,術前準備仔細完成,術中嚴格檢查安全核查單,術后轉運預防并發癥發生[2]。

2未來醫學發展和NORA策略

2.1新型藥物研發

雖然臨床上具備快速起效、消除、穩定的血流動力學和無呼吸抑制及毒副作用等特點的“理想麻醉藥”還未問世;但是臨床已經在研發新型咪達唑侖注射液和依托咪酯注射液等[4]。麻醉藥品是麻醉住院醫師需要掌握的基本知識。在基礎學習階段,住院醫師學習麻醉藥物基本的藥理特性。臨床工作中,住院醫師需要充分了解藥物的不同藥理特性、副作用及藥物代謝動力學;從而更好地掌控麻醉藥和為患者提供個體化治療策略。麻醉醫生和臨床藥師,需要幫助住院醫師掌握新型藥物的臨床特性,新藥的代謝特點;鼓勵住院醫師查閱文獻,嘗試新型麻醉藥物,并探索新藥對于臨床的貢獻。

2.2麻醉監護系統發展

麻醉最初的目的,使患者失去知覺或催眠。麻醉醫生通過麻醉鎮靜深度(depthofhypnosis,DOH)來反映麻醉鎮靜的不同程度,主要通過腦電監測系統來實現,如腦電雙頻譜指數等。閉環麻醉系統,是指通過測量患者臨床生命體征表現,反饋到調控中樞,適應性調控藥物持續輸注,從而實施個體化優質麻醉服務,達到臨床安全高效。術中知曉是麻醉監護期間的嚴重并發癥,給患者帶來不同程度的精神障礙;麻醉醫生積極研究麻醉監護系統的目的,為了防止此類并發癥的發生。有研究表明[5],麻醉醫生希望通過人工智能等最新技術的發展,使患者接受最佳的麻醉手術,從而達到最佳的圍術期康復狀態,降低圍術期醫療費用和患者經濟負擔。麻醉醫生推動DOH監測儀的發展,為NORA提供了完善的監護系統。DOH系統聯合閉環麻醉系統,為患者提供優質的麻醉服務[6]。閉環麻醉的優點是減少麻醉藥物總量、加速術后康復和改善血流動力學。因此,住院醫師必須了解DOH和閉環麻醉監護設備的特點和局限,理解靶控輸注和閉環麻醉系統的機制,從容的給患者實施精準麻醉管理。

2.3人工智能和大數據時代

大數據、人工智能、機器學習和深度學習,對未來醫學信息發展方向具有深遠影響意義。機器學習和深度學習,是未來住院醫師學習的主要模式。機器學習功能通過重復學習和訓練,可以整合大量臨床資料,達到精準治療,降低麻醉不良事件發生率,提高精準麻醉完成率。深度學習功能,是機器學習功能的延伸項目,進一步提高麻醉服務能力。大數據是指使用新型設備來處理大量混雜數據。麻醉監護設備產生的麻醉數據量,要比工商業產生的少很多。然而,這些數據量是非?;祀s的。這些信息來源于多數據流,例如生理性、人口統計學、藥物性、單純數據、圖像(視頻喉鏡和食道超聲)、賬單、網站內容管理系統數據等[7]。這些未來技術對于住院醫師從事NORA教學具有重要的指導作用。第一,人工智能技術發展,優化麻醉監護圖像處理能力[8]。麻醉醫生使用便攜及微創設備,可以得到良好的圖像傳輸,從而減少患者心理負擔。第二,人工智能改進教學質量;在模擬教室內,導師采用人工智能訓練麻醉住院醫師的臨床管理能力。第三,預測分析系統,告知住院醫師提前干預治療低血壓和其他生理性變化,降低內環境紊亂和臨床不良反應發生率[9]。第四,大數據將會保留大量病例資料,有助于分析不良并發癥的原因。

3住院醫師應對未來的策略

3.1教學和培訓

住院醫師開始學習NORA前,必須接受良好的麻醉基礎訓練[10]。循證醫學、患者安全和生理學監護,是麻醉管理的重點內容。這些內容結合導師輔導,可以提高住院醫師麻醉管理水平。傳統教學方法存在一定的弊端。目前流行的教學方法包括:翻轉課堂、問題導向和能力導向的學習、模擬訓練操作法[11]。這些多因素教育方法,在住院醫師的培訓中起到了重要的作用。

3.2認知健康

Gilkey等[12]詳述了四步法達到認知健康理念。第一,麻醉住院醫師必須理解重復訓練的經驗,優化大腦反應速度。因此,麻醉住院醫師需要不斷學習和模仿麻醉專家的臨床工作。第二,住院醫師需要努力工作,主動學習NORA手術過程及注意事項。反之,住院醫師被動面對持續的工作壓力,將會嚴重影響其學習效果。在大數據時代,住院醫師必須主動承擔風險并突破界限。第三,由于在NORA環境下,各種風險經常發生。因此,導師必須突破常規的模式和場景,給予住院醫師具有挑戰性的學習任務。第四,麻醉住院醫師要有持續不斷的工作學習態度,才能達到優化麻醉管理能力的目的。

3.3職業倦怠和不利影響

研究報道,麻醉住院醫師的職業倦怠率很高;同時住院醫師的適應性調整能力和情商個性特點教育,對于下一代麻醉醫生也至關重要[13]。NORA環境具有高麻醉風險和許多非標準化流程,這時麻醉住院醫師的韌性發展顯得尤為重要[14]。社交網絡指出,心理健康和樂觀心態,是建立韌性的重要品質[15]。Jones說過精英不是與生俱來的,而是后天培養出來的[15]。從商業、音樂到體育,各行各業的成功者都是在壓力下成長起來的。麻醉培訓核心任務是教育并幫助住院醫師建立處理應急情況的突變能力。住院醫師要學會如何保持高壓下高效工作,專注于自身工作以及控制好自我,把生活和工作強度處理好。

亚洲精品一二三区-久久