前言:中文期刊網精心挑選了人工智能課程總結范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。
人工智能課程總結范文1
人工智能課程是計算機類專業的核心課程之一,也是智能科學與技術、自動化和電子信息等專業的重要課程,其知識點具有不可替代的重要作用。該課程內容廣泛,具有很強的綜合性、應用性、創新性和挑戰性[1],其開設能夠更好地培養學生的創新思維和技術創新能力,為學生提供了一種新的思維方法和問題求解手段。同時,本課程能夠培養學生對計算機前沿技術的前瞻性,提高他們的科技素質和學術水平。通過課程的學習,學生對人工智能的定義和發展、基本原理和應用有一定的了解和掌握,啟發了對人工智能的學習興趣,培養創新能力。
中南大學人工智能課程開設于20世紀80年代中期。1983年,蔡自興作為訪問學者赴美國普度大學研修人工智能,并與美國國家工程科學院院士傅京孫(K. S. Fu)教授及清華大學徐光v教授合作研究人工智能。在傅京孫院士教授的指導下,蔡自興和徐光v教授執筆編著《人工智能及其應用》一書,并于1987年5月在清華大學出版社問世,成為國內率先出版的具有自主知識產權的人工智能教材。本教材不僅為我校人工智能課程提供了一部好教材,而且促進了國內高校普遍開設人工智能課程。此后,又陸續編著出版了《人工智能及其應用》第二版、第三版“本科生用書”和“研究生用書”、第四版等,修讀該課程的學生也與日俱增。該書第二版還獲得國家教育部科技進步一等獎。經過近20年建設,該我校人工智能課程于2003年評為國家精品課程,并在2008年評為國家雙語教學示范課程。這是至今國內唯一同時獲得國家級精品課程和雙語教學示范課程的人工智能課程。同時,我們還開發了人工智能網絡課程,具有網絡化、智能化和個性化等特色,被國家教育部評為優秀網絡課程,供兄弟院校人工智能教學參考使用,受到普遍歡迎[2]。
作為國內第一門人工智能精品課程,我們按照教育部精品課程標準建設《人工智能》課程,尤其是在教學內容、創新性教學方法和教學模式上進行不斷進行改革與探索,取得了很好的效果。本文即為我校人工智能精品課程建設與改革經驗的初步總結。
1教學內容優化
1.1課堂教學內容優化
教學內容的確定是課程的首要任務。如何選好教學內容,使學生既能了解本領域的概貌,又能適合學生的基礎,便于他們在有限的時間完成學習任務,是一件難事。教學內容除了包含基礎理論外,還應該反映人工智能領域的新發展和新動態,跟上學科發展的步伐。本課程最初設定的教學內容分基礎部分和擴展應用部分。基礎部分主要包括人工智能的定義和發展、知識的表示以及推理,而擴展應用部分主要包括專家系統、機器學習、機器規劃、機器視覺等。
近年來人工智能科學的快速發展,涌現出了大批新的方法和算法,研究熱點問題也從符號計算發展到智能計算和Agent等。
學內容,既能使學生了解本領域的概貌,又能適合學生的基礎,便于他們在有限的時間完成學習任務,是一件難事。教學內容除了包含基礎理論外,還應該反映人工智能領域的新發展和新動態,跟上學科發展的步伐。本人工智能課程最初設定的教學內容分基礎部分和擴展應用部分?;A部分主要包括人工智能的定義和發展、知識的表示以及推理,而擴展應用部分主要包括專家系統、機器學習、機器規劃、機器視覺等。
近年來人工智能科學的快速發展,涌現出了大批新的方法和算法,研究熱點問題也從符號計算發展到智能計算和Agent等。
隨著科學技術的不斷進步,在科學研究和工程實踐中遇到的問題變得越來越復雜,傳統的計算方法無法在一定時間內獲得精確的解。為了在求解時間和求解精度上取得平衡,很多具有啟發式特征的智能計算算法應運而生。這些算法通過模擬大自然和人類的智慧來實現對問題的優化求解。計算智能作為人工智能的一個新的分支是目前的研究熱點,它主要涉及神經計算、模糊計算、進化計算和人工生命等領域,在如模式識別、圖像處理、自動控制、通信網絡等很多領域都得到了成功應用。另一個近10年來人工智能的研究熱點是Agent和多Agent系統,其理論最早來自分布式人工智能,并隨著并行計算和分布式處理等技術的發展而逐漸成為熱點。
以上兩個內容都是人工智能的重要分支。因此,我們在《人工智能及其應用》第三第3版[3]和第四第4版教材[4]中已經順應形勢加入了這方面的內容,并將教學內容也進行了相應的擴展,加入了計算智能、分布式人工智能與Agent。由于不確定性推理和基于概率的推理方法應用也越來越廣泛,我們也將此類非經典推理方法單獨作為一章來進行教學。另外,還增加了一些新的內容,如本體論和非經典推理、粒群優化和蟻群計算、決策樹學習和增強學習、詞法分析和語料庫語言學,以及路徑規劃和基于Web的專家系統等。圖1給出本課程的教學內容大綱。
人工智能的教學內容涉及面廣且內容較多,要在有限課時內完成教學計劃并讓學生掌握,具有一定難度。因此需要根據教學對象的需求有所取舍。中南大度。因此需要根據教學對象的需求有所取舍。中南大學在智能科學與技術、計算機、自動化三3個專業中均開設了人工智能課程,根據相關專業課程教學對象,對學時和教學內容進行適當調整。對于智能科學與技術專業,人工智能課程為必修課,共48個學時含實驗8個學時。表1表示為相關專業的人工智能課程教學內容分配情況。對于計算機和自動化專業,人工智能課程為選修課,共32個學時含實驗8個學時。許多兄弟院校的計算機專業都把人工智能定為必修課,課程學時也在50學時左右。因此,我們一再強烈建議我校的計算機專業把人工智能列為必修課,并適當增加學時。由于智能科學與技術專業開設有專家系統和智能計算選修課程,因此在人工智能教學內容中只將這兩部分做簡要闡述,而將重點放在知識表示和推理以及擴展應用上。對于計算機專業學生來說,除基本的知識表示和推理外,計算智能和Agent技術也是他們在軟件開發和通訊技術理論學習中需掌握的重要概念。同時,計算智能、專家系統對自動控制和電氣工程也十分重要,對自動化專業則應掌握該方面的內容。
1.2實驗實踐教學創新
國內人工智能課程在開設之初大多沒有安排實驗內容,僅為理論基礎和概念講授。由于理論比較抽象,很難理解,學習效果不理想,學生們對于其應用實現也十分困惑。此后,各高校也逐步在該課程中分配了實驗學時,大多數采用prolog語言和專家系統作為實驗語言和對象[5]。為了改進該課程的教學,我們也從沒有實驗到將實驗學時從零調整為設置4個學時的實驗課時,然后到現在的8個學時的實驗課時。隨著課堂教學內容的改革,實驗內容也進行了優化和更新。
人工智能課程實驗的目的是幫助學生掌握基本理論,發揮主動性,研究探討人工智能算法和系統的運行和實現過程,提出思路并驗證自己探索的思路,從而更好的地掌握知識,培養研究能力和創新能力。因此,在實驗教學內容的設計上,實驗項目應具備研究性和綜合性。實驗項目目標明確,要求學生帶著問題和任務進行實驗,但實驗過程又要有一定的靈活性,學生可以根據自己的思考進行適當的調整。再者,充分采用虛擬實驗方式進行實驗,大大提高了學生的興趣,提供了分析和探討智能算法的很好平臺。同時,學生的實驗數據和實驗結果分析既有格式要求,又給學生報告自己的研究的過程和結果留有空間,并在評分時加以充分考慮。這些做法能夠鼓勵學生,特別是鼓勵優秀學生進行獨立性研究,滿足他們學習的需求。
1) 人工智能課程的實驗環節不足和課時分配問題。
中南大學的人工智能課程的實驗環節經歷了從精品課程建設前沒有到開設,一直到其內容和形式上的不斷改進過程。但目前實驗還主要處于演示性和編程的實驗階段,而非設計和訓練階段。此外,由于人工智能課程涵蓋范圍廣、內容多,而課程所設置的學時有限。,如何分配好課堂教學與實驗課時也是一個需要在今后課程建設中不斷探索的問題。
對于某些專業的人工智能課程,可以考慮單獨開設人工智能實驗課程或人工智能程序設計與實驗課程。
2) 人工智能技術發展迅速情況下如何保持該精品課程持續發展的問題。
人工智能作為一門高度融合的交叉科學,其發展速度迅速,不斷有新理論、新問題涌現出來。我們的
人工智能教學既要注重基礎理論知識,又要緊跟學科發展的步伐,勢必要求對課程內容進行不斷更新,這對我們的教學資源和教師素質都提出了更高的要求。
4結語
本文介紹了中南大學的精品課程――人工智能課程教學內容和創新性教學方法的一些探索,已在課堂教學內容的優化、實驗環節的改進、教學方法的創新的實施上取得了很好的效果,充分激勵了學生的學習積極性和主動性,多方位培養學生發現問題、分析問題和解決問題的能力。我們的想法和做法可供兄弟院校同行參考。不過,仍然存在一些不足之處。隨著智能科學與技術的發展和更為廣泛的應用,人工智能課程的重要地位必將更加突顯,我們也需要繼續努力,與時俱進,不斷完善人工智能精品課程的建設。
注:本文受教育部質量工程國家級精品課程人工智能(2003)、全國雙語教學示范課程人工智能(2007)項目支持。
參考文獻:
[1] 薛瑩. 創新教育新途徑人工智能與機器人教育:哈爾濱市教育研究院張麗華院長訪談錄[J]. 中國信息技術教育,2010(1): 20-22.
[2] 蔡自興,肖曉明,蒙祖強,等. 樹立精品意識搞好人工智能課程建設[J]. 中國大學教學,2004(1):28-29.
[3] 蔡自興,徐光佑. 人工智能及其應用[M]. 3版. 北京:清華大學出版社,2003.
[4] 蔡自興,徐光佑. 人工智能及其應用[M]. 4版. 北京:清華大學出版社,2010.
[5] 韓潔瓊,閆大順. 人工智能實驗教學探討[J]. 計算機教育,2009,(11):135-138.
[6] 劉麗玨,陳白帆,王勇,等. 精益求精建設人工智能精品課程[J]. 計算機教育,2009,(17):69-71.
Exploration of Innovative Teaching Mode of Artificial Intelligence Elabrate Course
――Construction and Reformation in Elaborate Course of Artificial Intelligence
CHEN Bai-fan, CAI Zi-xing, LIU Li-jue
(Institute of Information Science and Engineering, Centnal South University, Changsha 410083, China)
人工智能課程總結范文2
【關鍵詞】大規模開放在線課程;人工智能課程;翻轉教學法
0 引言
近年社會對計算機專業人才能力的要求越來越高,而學生所學與實際需求存在不少差距,高校計算機專業課程教學因而遭遇詬病。依托信息與網絡技術支撐的大規模網絡開放課程(massive online open course,MOOC)較好貫徹了以學為中心的理念,其翻轉教學模式與靈活有效的交互極大提升了學習興趣[1]。搭建MOOC平臺的計算機技術既是技術基礎,也是熱門MOOC課程。在此浪潮下傳統高校計算機專業的教學首當其沖受到沖擊,遇到前所未有的挑戰??v觀國際三大MOOC巨頭的課程建設均始于計算機類專業課程,同時也是所占比例較大的課程系列,其中人工智能(Artificial Intelligence,AI)課程在Coursera、Udacity[1]兩個平臺上均是最早開設的課程之一。采用何種教學模式更適應社會對人才的需求呢?這是應對挑戰的關鍵問題。
1 人工智能課程的課堂教學困境
人工智能是研究模擬、延伸和擴展人類智能的理論、方法、技術及應用的前沿交叉學科,涉及面廣、研究性強,還不斷產生新的理論和方法。課程難度大理論強實踐難,也是公認難講的課程之一,該課程具有如下特點:
1.1 先導課多,知識抽象,涉及面廣,更新快
前期知識包括:數據結構、離散數學、程序設計、圖像處理等。如果前期知識不扎實,很難理解內容并融會貫通。傳統內容包括:知識表示和推理、搜索策略、模糊理論、神經網絡、機器學習、專家系統、遺傳算法等,涉及大量抽象理論和復雜算法。教材普遍特點是:內容滯后,枯燥深奧的理論和解決現實問題的實踐聯系不緊密。
1.2 研究性強
該領域很多內容仍是科研熱點,并不斷涌現出新的研究方向、新內容、新方法、新技術和新應用。
1.3 教學方式單調
技術和管理的局限也制約了教學方式,教學方式基本以教為中心,停留在講授、問答等簡單互動上,教學方法單一。很少能提供學生自學、討論、合作和實踐的一整套互動實踐機會,難以真正體現以學為中心的理念。
1.4 學生缺乏興趣
一方面,課程本身特點使得課程容易陷入枯燥的紙上談兵的尷尬。另一方面,即將畢業的高年級本科生對未來規劃明確,抽象的人工智能課程無論從職業發展還是繼續深造對學生并沒有立竿見影的效果,進一步拉低興趣。此外,教材滯后,教學方法單一等也會影響興趣。
如火如荼發展的MOOC的課程,尤其Udacity的課程設計之初就立足于解決實際問題的導向,做法上的獨特之處成功吸引了大批學生。課堂教學中借鑒在MOOC上被證明有效的教學模式和方法,不啻為一種嘗試,以期擺脫教學困境,提高學習興趣,最終提升教學質量。
2 MOOC的教學模式
MOOC的教學模式分為三種:cMOOC、xMOOC 和 tMOOC[2]。早期的cMOOC的教學模式特點是學習者完全做主,但復雜的網絡互動產生龐大而混雜的知識網,缺乏識別主次和歸納總結能力學生常因信息過載陷入茫然無措的境地。2011年Udacity 創始人之一在網上開設的“人工智能導論”課程改變了表現風格,把互聯網作為教學媒體的呈現潛力發揮到極致,按知識點分割內容成短小視頻,其間插入現場對問題的解決,突出了Udacity有別于傳統教育機構及其先行者的地方:注重發現并解決問題。這就是xMOOC的教學模式,沿襲并創新了熟悉的學習風格,使得MOOC如魚得水漸漸發展壯大。隨著MOOC逐步成熟,為了適合具有專業基礎的職業技能培訓,發展培養針對具體任務的探究學習教學模式,即tMOOC模式,這是Udacity網站課程的另一個設計目標。表1顯示了MOOC的三種模式的對比。
以Udacity的人工智能導論課程為例,只要高中畢業具有概率論和數理統計基礎的學生就可以學習,該課程適合入門,但難度較低,內容較少。清華大學的馬少平編寫的人工智能教材是很多大學,包括我院人工智能課程的教材,清華大學的人工智能課程經過多年發展已經形成了一個系列教學資源庫,包括教材、課程視頻、教學課件、作業及答案和實驗設計等。根據Udacity網站的人工智能導論課程的展示,表2從幾方面對比了Udacity人工智能課程與清華大學馬少平版的人工智能課程情況:
從表2可以發現Udacity的人工智能視頻采用了按知識塊分割成短小視頻,在期間和完畢之后都準備了測試,細節上體現了以學為主的理念??v觀類似人工智能的國家精品課程[3],學習資源多為文本類,重用難,對教學重難點沒有拓展和轉化。這種以內容共享為中心的呈現模式,缺乏與學習者充分交互,難以體現以學為中心的教學理念。
在MOOC的教學設計中,調動學習者極大熱情的是翻轉課堂,在學習環境中引入了自主協作[4-5],在交流機制中融入了多元互動,給學習者帶來積極、主動、高效的學習,翻轉課堂和傳統課堂的區別如表3所示:
3 MOOC的教學模式對人工智能課堂教學的啟示
3.1 教學內容的優化與調整
MOOC的教學通過把理論抽象的知識點分割成小段錄制的微課視頻,時長不超過15分鐘,內容銜接處具有一定交互性,講解形象化,提供給學生反復觀看,這種用技術處理分解知識點和把難點從抽象變成具象的過程降低了理解難度。
課堂教學也可以通過分而治之的方式對教學內容優化調整。人工智能涉及內容與范圍多而雜,作為入門課程并不要面面俱到,根據學生層次,可以區分重點掌握和一般介紹的內容,以點帶面鋪開,因此,根據學生特點,把成熟的基礎理論和這些理論的實際應用整合,輔以其他新技術的穿插介紹,主要分三塊:
①人工智能的概念和發展,熟悉人工智能的研究和應用領域;
②人工智能的基本技術,包括知識表示,邏輯推理、搜索策略、模糊理論等;
③涉及現實應用,如:機器學習,模式識別,自然語言理解,智能控制等。
為了反映人工智能領域最新進展,教師還可以收集學生感興趣的最新成果專題信息,及時更新、調整教學內容,通過與實際更緊密的融合接軌,對課堂上沒時間介紹而又較熱點的新知識,通過提供方向和資料解決,注重提高興趣的同時,也展示出課程學科特點、主流技術及發展趨勢。
3.2 緊密結合實際
Udacity的開設之初的目的就是學習為了解決現實問題,其人工智能課程設計也不例外,包含有實際遇到問題的解決,這種立竿見影的好處就是極大激發了興趣。
考慮到高年級學生對解決實際問題技術的興趣遠遠大于技術理論等細節,不想花太多時間去理解復雜而難以看到實踐效果的理論上,更想通過實際體驗解決問題增強成就感。教學內容的設計尤其緊密結合實際運用。
傳統人工智能講授通過實例解答或推證式講述理論,如知識表示和搜索推理技術,該部分理論強,應用實例少,往往學生感覺枯燥乏味,教師也感覺晦澀抽象,學生對所講內容基本靠死記方法和步驟,這種僵化的教與學影響了教學效果。
因此,設計教學時尤其注重內容的實用性。除了講授至今仍沿用和有效的基本原理和方法外,引入近年發展起來的方法和技術,如智能算法等,對這些內容重點在技術的具體實現上,強調與實際的融合貫通。教學過程中加入與課程內容對應又可以用計算機實現的試用內容。如模式識別應用于手寫數字識別,通過仿真軟件模擬實現算法,獲得立竿見影的效果體驗,加深對算法的認識,引起學生濃厚的興趣。同時也對某些很有發展前景的技術興趣導入,如目前人工智能研究側重人類理性邏輯功能的模擬,而如果把情感智能考慮進去,才更有人性化的智能決策。這就是經過了將近20年發展的情感計算,隨著可穿戴技術漸漸滲透進生活,引起更多關注,這些接地氣的內容提升了興趣。
3.3 實踐能力的培養
Udacity 創始人史蒂芬斯博士的說過,“即使是最好的大學,其計算機課程所傳授的技能也是浮于理論的”。學習的目的是為了解決實際問題,帶著問題學習和思考,有利于主動學習的激發。這些方面,可以參考Udacity人工智能課程的實驗內容修正。強調學習是為了解決實際問題服務的目標。
3.4 教學模式及教學方法的變化
3.4.1 實例教學法
人工智能內容的抽象性決定了知識點的難度,Udacity人工智能課程教學中盡量把難懂的知識點結合現實中有趣實例,通過感性體驗提高理性理解,讓學生容易接受。筆者進行了一些化難為易的嘗試:如利用漢諾塔問題講解狀態空間的知識表示,通過野人過河的游戲程序步步領會理論精髓;結合下棋軟件體驗模擬人腦思考的計算機博弈的極大極小搜索思路,這些實例教學激起了興趣,擴展了學生思路,拓寬了視野。
3.4.2 翻轉教學法
整門課程錄制課程小視頻還有一定難度,作為嘗試,選擇少量知識點錄制視頻進行翻轉教學。如抽象的理論部分,借鑒網上已有視頻資源融入教學過程,分解知識點破解難點,形象化與短時間的重復講解,增加學生對抽象內容的理解,期間穿插核查對理解內容的核查,并留出思考時間,強化學習效果。
3.4.3 交互環境的營造,輔助教學過程完善
1)基于聯通主義的學習交互[6-7]
在MOOC課程中,提供在線交流論壇,學習者建立課程組,學習組等方式交流,這種教與學、學與學的交互不但是網狀進行的,而且是即時的。學生將互動產生的內容作為學習的中心,通過學習者不同認識的交互,建立新的認知結構,拓寬了視野,更有利于問題的有效解決。這種互動交流分成三種形式:
①教師對統一回答提問集中且意義較大的疑難問題;
②學習者分享學習感悟;
③學生間交流帶來不同認知的碰撞。
以上三種情況的互動在課堂教學中也可以運用于課堂教學:及時分析整理共同問題,集中回復;課堂教學的互動除了課堂上及時了解學生反饋的互動,還有對解決問題的互動。課下互動可以利用學者網建立課程組,提供了較好的師生交流形式與效果,同時利用學習組在小組中分享互助,小組成員的交流引起認知碰撞,這種實際參與的體驗加深了理解,并鞏固學到內容,這些資料的逐漸積累還可以復用。
2)基于行為主義的學習反饋[8]
MOOC 遵循了程序教學的一般原則,尤其注重學生反饋,像游戲一樣關卡設置讓整個過程充滿挑戰性,一些機器評分實現了及時學習反饋,擺脫了單向提供課程資源的弊端。課堂教學可以借鑒這種借助技術手段互動了解學生學習的情況,促使有意義學習的發生。
4 教學改革的實施
利用以上措施在《人工智能》課程的教學中實踐,通過在xMOOC教學模式中部分適當內容引入翻轉教學法與利用學者網的課程交互,探索提高興趣,促進理論與實踐的融合,促進有意義學習的發生,提高學生實踐能力的途徑。通過觀察,調查與訪談等方式,了解學生在該教學模式中興趣與能力改善狀況,同時研究教師教學法轉變與教學水平變化的關系,根據追蹤研究效果,發現這種改善調動了學習興趣,促進了教學效果。實踐中通過建立實驗組(班)與對照組(班)、評價教學模式和教學效果等因素,不斷總結、修正和完善,期望建立適應當前形勢與環境的有效的該課程的教學模式與教學方法。
5 結束語
筆者結合人工智能課程的教學實踐,針對本科高年級的教學特點和人工智能課程學科特點,提出在設計人工智能教學時,通過MOOC的教學模式和教學方法完善課堂教學,注重內容的實用性和新穎性,適當穿插新方向的內容,目標是將難學、枯燥、難理解的問題,變得易學、有趣、易理解。從學生反饋來看,這些方法起到了積極的實際效果,有效地提高了學習積極性。
【參考文獻】
[1]udacity的人工智能導論課程網[EB/OL].https:///course/cs271.
[2]王萍.大規模在線開放課程的新發展與應用:從cMOOC 到xMOOC[J].現代遠程教育研究,2013(03):13-19.
[3]國家精品課程資源網[DB/OL].[2013-04-22].http://.
[4]徐明,龍軍.基于 MOOC 理念的網絡信息安全系列課程教學改革[J].高等教育研究學報,2013,36(03).
[5]王文禮.MOOC 的發展及其對高等教育的影響[J].江蘇高教,2013(2):53-57.
[6]李青,王濤.MOOC:一種基于連通主義的巨型開放課程模式[J].中國遠程教育,2012(3):30-36.
人工智能課程總結范文3
當前高職教育中為計算機專業學生所開設的人工智能課程很大程度上沿用了普通高等教育環境下的教學方式和內容,這顯然與高職教育本身培養人才的目標和方式不一致。高職教育的最終目標是要培養適應生產需要的技能型、應用型人才,而高職教育在教學方式上應更為注重實踐教學,包括各種實驗、實訓、實習和設計。因此,人工智能課程中單純的理論講授并不能有效地適應高職教育的實際教學環境要求,有必要對人工智能課程在教學內容和方式上加以改革。三個改革途徑(一)引導學生閱讀應用研究文獻
高職教育強調培養學生的知識應用技能,其中重要的一點是要培養學生把理論知識應用到實際生產中的能力。然而在教學實踐過程中,學生普遍反映由于人工智能課程理論性強,難于從課本理論聯系到實際的專業應用上,這樣對激發學生的學習興趣,提高技能應用水平是不利的。
實際上,人工智能涉及的應用領域極為廣泛,其中在專家系統、模式識別、智能控制、數據挖掘、自然語言理解等方面尤為突出,每一種應用都能夠很好地體現出人工智能學科的基本理論方法特點。因此,在課程學習的開始階段,應讓學生按照個人興趣自行選定某個應用領域,在一定的提示和引導下通過檢索有關文獻,訪問相關的科研院校網站等方式獲取資料,了解當前該領域的發展現狀和具體產品的開發和使用情況,最后在課程的結束階段以學習報告的形式在課堂上加以演示和共同討論,這樣可以大大激發學生學習人工智能課程的主觀能動性,開闊學生的知識視野。資料的收集閱讀與思考是知識應用的首要環節,對于培養應用型人才的知識應用技能很有幫助。(二)安排學生對經典算法程序進行實驗
與普通高等教育相比,高職教育更加強調實踐教學的重要性。從實踐中學習和理解理論知識,并且把所學知識運用到實踐中,這是高職教育的重要特點。人工智能課程內容抽象而概念性強,單純的理論講解學生難以從中得到啟發,也難以體現出高職教育突出實踐教學的特點,為此需要安排學生動手實驗,從實踐中理解人工智能科學的理論原理和應用途徑。
在人工智能科學的發展過程中,先后提出了一些經典的優秀算法程序,如A*算法、遺傳算法、神經網絡的BP學習算法等,在科研和工程實際中得到了廣泛的應用,在實踐教學中同樣有著重要價值。根據教學要求和實際情況,學生并不需要自行設計關于這些算法的具體程序,在提倡開放和共享源代碼的今天,通過網絡能夠獲得大量相關的程序代碼資源。同時,一些軟件平臺也集成了一些工具箱,如遺傳算法工具箱、神經網絡工具箱等,只需設定相關輸入參數和數據,便可通過調用工具箱函數實現算法,極為簡便而易于理解。
學生應通過對這些程序作驗證性實驗來理解所學內容。為安排學生有效地進行實驗,教師應結合當前階段所講授的內容準備相應的算法程序,當該部分內容結束后在課堂上講解和演示算法程序的運行方法。學生獲得該算法程序以及具體的實驗任務后在課后完成實驗并提交實驗報告。
例如,在講授啟發式搜索時,可向學生提供A*算法求解八數碼難題的算法程序,并對某個學生給定某個初始棋盤狀態,要求學生動手運行程序并記錄由算法擴展所得的每個棋盤狀態的估價函數計算結果,以及相應的OPEN表和CLOSED表的變化情況,從中理解A*算法的原理特點。又如,在講授BP學習算法時,可根據學生的實際情況對內容進行調整,強調BP神經網絡的實際工程應用價值,而對BP算法的基本原理只作簡單介紹。向學生提供利用BP神經網絡學習特定目標函數的MATLAB程序代碼后,要求學生動手運行該程序,并且記錄和對比神經網絡在訓練前后對目標函數的逼近效果。
(三)啟發學生引入人工智能理論方法對畢業設計加以創新
畢業設計是高職教育的重要環節,學生通過畢業設計對以往所學知識作系統性總結,通過畢業設計能進一步加強學生的技能訓練,提高學生的技能應用水平。從實踐教學的角度來講,畢業設計不僅僅要求學生對已學知識和技能的簡單重復運用,更重要的是強調學生能夠主動獨立地分析實際問題,對問題的解決方法提出新的觀點并付諸實踐。然而從教學的實際來看,在畢業設計中學生創新的主動性不足,往往停留在繼承和模仿階段,畢業設計作品少有突破和創新。究其原因,并非學生所學知識和技能不足,而是學生未懂得如何分析已有問題,在其基礎上引入新的解決方法或提出新的應用內容。
人工智能課程總結范文4
關鍵詞:人工智能;專家系統;ARM;單片機
人工智能(AI)[1]是計算機科學的重要分支,是計算機科學與技術專業的核心課程之一。本課程在介紹人工智能的基本概念、基本方法的基礎上,主要是研究如何用計算機來模擬人類智能,即如何用計算機實現諸如問題求解、規劃推理、模式識別、知識工程、自然語言處理、機器學習等只有人類才具備的“智能”,本課程重點闡明這些方法的一般性原理和基本思想,使得計算機更好得為人類服務。
1人工智能課程體系
人工智能主要研究傳統人工智能的知識表示方法,包括狀態空間法、問題歸約法謂詞邏輯法、語義網絡法、框架表示、劇本表示等;搜索推理技術主要包括盲目搜索、啟發式搜索、消解原理、規則演繹算法和產生式系統等。
人工智能的研究論題包括計算機視覺、規劃與行動、多Agent系統、語音識別、自動語言理解、專家系統和機器學習等。這些研究論題的基礎是通用和專用的知識表示和推理機制、問題求解和搜索算法,以及計算智能技術等。
人工智能課程在我校計算機科學與工程學院是作為大三年級的一門專業選修課開設,總共學時數為:60(其中理論學時為36,實驗學時為24),隨著計算機技術的不斷更新發展,人工智能的應用領域變得越來越廣,因此人工智能(AI)這個學科已不再陌生,很多學生對其充滿興趣,所以在選課人數上遠遠超過其他選修課的人數,另外結合我校的實際情況,部分理論或實驗設計項目可以與其他相關專業結合起來而應用。
2人工智能教學實踐
50多年以來,人工智能獲得很大的發展,已經引起眾多學科和不同專業背景學者們的日益重視,成為一門廣泛的交叉和前沿科學,但是到目前為止人工智能至今仍尚無統一的定義,要給人工智能下一個準確、科學和嚴謹的定義也是困難的。
由于人工智能[2]是一門交叉性的學科,涉及到了控制論、語言學、信息論、神經生理學、心理學、數學、哲學等許多學科。所以該學科具有知識點多、涉及面廣、內容抽象、不易理解、理論性強、需要較好的數學基礎和較強的邏輯思維能力等特點,導致了在教學過程中老師講得吃力、學生聽得吃力。盡管在多年的教學過程中積累了一些經驗,但是對于如何把握這門課程的特點,提高學生的學習興趣,幫助學生更好的理解這門課程,目前仍然有很多問題需要研究解決。
目前在整個教學過程中存在的主要問題[3]是:
1) 教學內容陳舊,部分參考書相關內容或案例都過于陳舊。在整個教學過程中,多數教學案例涉及到人工智能理論的高級應用――機器人,目前在國際及國內機器人的水平已經達到相當高的水平,但是部分教科書中仍沿用關節型機器人為例,教學內容稍顯陳舊。
2) 教材難易程度不均勻,部分章節學生難以理解。由于人工智能課程的部分章節,本身就可以獨立成一門課程,但由于是面向本科生的內容,因此很多內容壓縮于一章來講解,同時由于課時所限,完全不能將相關的內容講透講通;例如:神經計算中的神經網絡,與模糊邏輯控制的相關理論與應用。
3) 教學手段單一,教學過程中缺乏師生之間的溝通與交流。經過自己的實踐教學及對兄弟院校的人工智能的教學內容與教學手段的調研,同時也在學生之間進行溝通交流,發現多數同學反映,理論與應用雖然前沿,但是在學習過程中,教師教學手段單一,內容枯燥乏味,一般的教學模式,多采用“老師講,學生聽”的方法,整個教學效果并不理想。
4) 考核方法不科學,不能體現學生實際的學習情況。目前對于課程學習的考核采用閉卷考試的方式,很多考點有的同學根本不理解,完全死記硬背,考后又將內容丟棄,從學習的效果來講,收獲甚微且完全沒有達到真正學習及應用的能力。
3教學方法改進
3.1注重激發學生的學習興趣
科學家愛因斯坦曾說過:“興趣是最好的老師?!比绾卧诮虒W工作中激發和培養學生的學習興趣,提高他們學習的主動性和積極性是當前教學改革中迫切需要解決的重要問題。
在實際的課堂教學中發現,剛開始聽課由于有興趣學生整體學習的積極性很高,但是一段時間過后發現部分學生由于教學內容抽象,難點比較多,不便于理解,興趣日漸變少,針對此種情況,可以采用任務驅動式教學或案例教學。
例如:在講專家系統章節時,在授課之前先通過互聯網,采取案例教學法,給學生們實時在線演示一個醫療專家診斷系統,演示其中的功能,同時與學生互動,以問答式與學生互動,了解目前專家系統的具體應用、可以解決的問題、給人民生活帶來的益處等。通過這種教學的形式,一方面可以激發學生的學習興趣;另一方面也使同學們體會到人工智能與我們生活的貼近程度。第二步,采用任務驅動法,具體來說,它是指教學全過程中,以醫療專家診斷系統若干個具體任務為中心,通過完成任務的過程,介紹和學習基本知識和具體設計方法。
3.2注重教材選擇
這一任務的執行者主要是由教研室主任或任課老師來完成。目前在各高校中所使用的人工智能相關教材的種類繁多,章節和內容的設置上也存在差別。筆者在訂閱教材或參加教材展銷的活動中,都比較重視人工智能教材的情況,通過比較發現,有的教材內容及難度太低,完全不符合高等本科院校的要求,而部分出版社的教材則是內容及章節安排內容太多太泛,有些知識點講的又過于深奧,限于學時所限也不適合選用。在選教材方面,除了關注內容方面外,還要注重書上所講的一些實例,注重這些例子的典型性、時效性及新穎性,例如,部分教材在自動規劃這一章,選用機械手作為例子來說明積木世界的機器人規劃問題,還有一些選擇關節機器人,前些年這樣的機器人技術確實是個難點,但是依據現在成熟的機器人技術,無論是國際還是國內都已不再是技術難點,再拿這個例子去配合理論去講解,無論內容還是形式都稍顯陳舊,目前機器人技術發展水平基本上達到盡可能高仿真狀態。
3.3運用現代化的多媒體教學手段
針對人工智能課程相關內容比較抽象,公式推導比較繁瑣,除了具有完善的教學大綱、合理的教學計劃以及好的教材外,還應該根據學校的實際硬件條件盡可能地選擇多媒體教學手段來輔助教學。因此在實踐教學中,配合教學內容,充分利用計算機、投影儀以及互聯網的優勢,結合多種教學方法與手段組織整個教學過程。例如:在講述搜索推理技術時,使用一些小的演示軟件,將相關推理技術的理論通過動畫的形式一步一步演示出來;在講專家系統相關理論知識時,尤其是各種類型的專家系統,采用互聯網上的一些在線視頻資源為例,給同學進行詳細講解,同時結合農業院校的特點,在線資源有如農業專家系統或動物專家診斷系統等,這樣學生可以加強對理論知識的理解,同時也體會到理論不再是抽象空洞的文字描述;在自動規劃這一章,給同學們選擇演示發達國家目前研制的各種類型機器人,通過這些形象生動、行為舉止逼近真實人的機器人來給學生講理論,這樣學生通過觀看視頻資源,不僅可以拓寬知識面及視野,同時也可以及時地了解國際及國內機器人的發展水平及差距,不斷更正自己的錯誤觀點并更新自己新的專業認識,另一個方面也可以同時激發學生們的學習熱情和積極性,這一點在課堂實踐教學中得到驗證,得到廣大同學的認可和接受,整個教學課堂不再那么單調枯燥呆板了,基本可以達到在娛樂中傳授專業知識。
3.4加強對實驗教學的重視
目前高校在人工智能的教學過程中,實驗所占的學時比較少,有的甚至就不安排實驗課學時;另外實驗內容也相對比較簡單,應用不到理論課堂上所學到的人工智能原理,實驗效果不是很好。面向人工智能課程的程序設計語言,多采用Prolog程序設計語言,該語言是一種基于一階謂詞的邏輯程序設計語言,它在AI和知識庫的實現技術方面具有十分重要的作用,具有表達力強、表示方便、便于理解、語法簡單等優點。但在整個實驗教學環境也遇到了如下問題:首先是目前有關人工智能的專門配套實驗教程很少;其次是即使有諸如《面向人工智能程序設計Prolog》教程,則主要是側重介紹這門自然語言的程序設計,而其中很多部分與AI實驗環節關聯度不大,另外教材價位也比較高。針對此種情況,筆者在24個學時的實驗教學過程中,安排7個實驗內容,其中最后一個專家系統的設計與實現作為一個綜合性實驗來設計。在進行實驗教學的過程中,首先參考多本Prolog程序設計教程,選擇其中與實驗教學計劃中相關的內容,專門編寫相應的電子教程,同時也結合我校學生本身的特點[4],有側重地體現和編寫,總的目的是給學生一份完整的、系統的、規范的電子教程。這樣做的目的是:一方面作為學生參考的技術文檔;另一方面也可以節省學生的部分經濟開支。電子教程的結構分為三個部分來完成,首先為人工智能理論及原理,Prolog語言的使用說明;其次具體的例子演示(均經過調試正常運行);最后為布置給學生具體的實驗內容及相關題目,以提供給學生自己動手實踐的機會。此外在實驗教學過程中,同時也會給學生們自由發揮的機會,比如專家系統的設計與實現作為一個綜合性實驗,學生可以采用Prolog編程實現,也可以采用其他自己擅長的程序設計語言,例如有的同學選擇C語言、VC++、Visual Basic、Java及網頁開發設計語言ASP/JSP等,此外在實驗內容方面,實驗遞交的專家系統涉及多個領域(有動物辨別、醫療診斷、動物養殖咨詢等專家系統)、范圍也頗廣,實驗內容重復性很小,在設計過程中,絕大部分同學均是結合自己的興趣愛好來完成設計。
4結語
人工智能的研究成果將能夠創造出更多、更高級的智能“制品”,并使之在越來越多的領域超越人類智能,同時將為發展國民經濟和改善人類生活做出更大的貢獻。作為一名當代的大學生有必要學好這門課程,但是根據實際教學情況,教師與學生仍然需要繼續進行相應的研究與發展,只有不斷地探索和提高,才能使我們的教學工作更上一層樓,才能培養出符合時代和社會需求的人才。另外人工智能與農業等方面存在很多結合應用的契機,這樣計算機就可真正地服務于社會、服務于人類、服務于農業、應用于農業、發展農業。
參考文獻:
[1] 蔡自興. 人工智能及其應用[M]. 3版. 北京:清華大學出版社,2007.
[2] 陳峰,文運平. 淺談人工智能課程的教學[J]. 消費導刊,2006(12):123.
[3] 趙蔓,何千舟. 面向21世紀的人工智能課程的教學思考[J]. 沈陽教育學院學報,2004,6(4):131-132.
[4] 王蓮芝. 高等農林院校人工智能教學的探討[J]. 高等農業教育,2003(12):64-65
Study of the Artificial Intelligence Teaching Methods
HAN Jie-qiong1, YU Yong-quan2
(1. School of Computer Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
2. School of Computer, Guangdong University of Technology, Guangzhou 510075, China)
人工智能課程總結范文5
關鍵詞:人工智能;智能分類;知識體系
文章編號:1672-5913(2010)08-0025-04
中圖分類號:G642
文獻標識碼:A
1 人工智能
斯坦福大學的Nilsson提出人工智能(ArtificialIntelligence AI)是關于知識的科學,即知識的表示、知識的獲取以及知識的運用。人工智能在AI學科的基本思想和內容是研究人類智能活動規律,研究模擬人類某些智能行為的基本理論、方法和技術,構造具有一定智能的人工系統,讓計算機去完成以往需要人的智力才能勝任的工作。
AI涉及計算機科學、控制論、信息論、神經心理學、哲學及語言學等多個學科,是一門新理論和新技術不斷出現的綜合性邊緣學科。AI與思維科學是實踐和理論的關系,屬于思維科學的技術應用層次,延伸了人腦的功能,實現腦力勞動的自動化。
作為一門多學科交叉的課程,人工智能在機器學習、模式識別、機器視覺、機器人學、航空航天、自然語言理解、Web知識發現等領域取得了突破性進展。機器學習與知識表達的關系,模式識別與機器人學、機器視覺的關系,是學習的難點。人工智能的研究方法、學術流派、理論知識非常豐富,應用領域十分廣泛。沒有一個比較科學的AI知識體系,學生找不到體系和關系,會對AI產生神龍見首不見尾的感覺,嚴重影響學習興趣。
本文從以下幾個方面進行闡述:(1)智能與AI的關系;(2)AI的知識單元;(3)AI的相關學科、理論基礎、代表性成果及方法;(4)AI的知識體系及應用。把握好上述的幾個方面,就可以確準地表達知識,利用知識進行問題求解,掌握發現知識的方法,感知與理解智能系統構建的成果及技術。
2 AI及分類
認為智能源于腦,把腦(主要人腦)宏觀層次的智能稱為腦智能。而蜜蜂群、螞蟻群等群體行為表現出的智能稱為群智能。兩種智能分屬不同的層次和應用,腦智能是個體智能,群智能是社會智能或系統智能。模擬上述智能而生成的AI分兩種,模擬腦智能的符號智能和模擬群智能的計算智能。
AI劃分為符號智能和計算智能有些籠統。如進行仔細區分,AI來源于心理模擬、生理模擬、行為模擬和群體模擬。
2,1心理模型,符號推演
以心理模擬為依據,智能模型起源于數理邏輯。因人腦的記憶、聯系、推理等思維活動在心理層面進行。Boole在《思維法則》中首次用符號語言描述思維活動的基本推理法則。
符號智能將信息和知識表示為符號形式,邏輯建模人的思維活動,通過邏輯推理,模擬人腦的思維過程進行問題求解。稱為心理學派、邏輯學派或符號主義。
2,2生理模擬,神經計算
認為AI源于仿生學,特別是人腦模型。代表性成果是生理學家McCulloch和數理邏輯學家Pitts創立的腦模型,即MP模型。Hopfield提出用硬件模擬神經網絡,Rumelhart提出多層網絡中的反向傳播BP算法。從模型到算法,從理論分析到工程實現,生理模擬及神經計算成為AI的一個研究流派。
2,3行為模擬,控制進化
基于行為模擬的AI稱為行為主義及控制論學派。起源于控制論,模擬人及動物與環境交互、控制過程中的智能活動或行為,認為智能只有在環境中才是真正的智能。其批評符號主義和仿生學派對真實世界的過分簡化??刂普摰南到y研究在上個世紀60年代播下智能控制和智能機器人的種子,在80年代誕生智能控制和智能機器人系統。
2,4群體智能,仿生計算
模擬生物群落的群體智能行為,將仿生計算的成果,直接付諸應用。代表性成果有遺傳算法,進化計算,蟻群算法和粒子群算法等。計算智能以數據為基礎,主要通過數值計算,運用算法進行問題求解。通過符號智能的知識表達、推理及模式識別等前期處理得到的數值,運用計算智能算法進行搜索計算。
AI主要體現為符號智能和計算智能,符號智能的研究內容主要有知識模型化及表示、搜索理論、推理、不確定性推理、系統結構和符號學習等。計算智能的研究內容有進化計算、模糊邏輯、神經計算和統計學習。這些研究內容所涵蓋的研究方法在表1中進行詳細的說明,同時較為完整地體現AI課程的知識體系結構。
3 AI的知識體系
從思維觀點看,AI不僅僅限于邏輯思維,同時需要形象思維和靈感思維。數學是基礎科學,也進入語言和思維領域,在邏輯、模糊數學等范圍發揮作用。
AI是一個龐大的家族,包括眾多的基礎理論、重要的成果及算法、學科分支和應用領域等。如果將AI家族作為一棵樹來描述,智能機器應作為樹的最終節點。將AI劃分為問題求解、知識與推理、學習與發現、感知與理解、系統與建造等五個知識單元。表2總結了AI家族的知識體系及其相關的學科、理論基礎、代表性成果及方法。
3,1問題求解
1957年,Newell和Simon通過心理學實驗,發現人在問題求解時思維過程的一般規律大致可分為三個階段:①先思考出大致的解題計劃:②根據記憶中的公理、定理和推理規則組織解題過程:③進行方法和目的分析,不斷修正解題計劃。
搜索是問題求解的核心技術,符號智能進行圖搜索,計算智能進行智能優化搜索。
3,2知識和推理
知識就是力量,知識是智能基礎和來源。推理是人腦的基本功能,知識與推理是AI的重要內容,在表1中對這部分內容進行了詳細描述。知識表示模型有謂詞邏輯、產生式表示、語義網絡、框架等方法。推理方法有自動推理和不確定推理等。
AI的研究對象,大多具有不確定性。不確定性是針對系統或問題含有的不確定結構、參數等信息,如天氣預報下雨概率45.6%,此預報屬結論的不確定性。
3,3學習與發現
機器學習是指機器對自身行為的修正或性能的改善,使計算機具有學習能力,自動獲取新的事實及新的推理算法。機器學習的研究重點是學習過程的認知模型、機器學習的計算理論、新的學習算法、綜合多種學習方法的機器學習系統等。主要有符號學習、連接學習和統計學習等。
機器發現客觀規律的過程稱為知識發現,主要從大規模數據集或數據庫發現知識或模式。知識發現方法有統計方法、粗集和模糊集、機器學習、智能計算等方法。知識發現的任務分為數據總結、概念描述、分類、聚類及相關性分析等。
機器學習的研究成果主要是機器的直接學習,類似人類通過閱讀、講課等間接繼承性學習涉及很少。在智能硬件方面卻舉步維艱,要實現人工智能的最終目標,作為載體的智能計算機系統必須由質的飛躍。 人工智能的研究仍然是機遇與挑戰并存。
3,4感知與理解
機器感知涉及圖像、聲音、文字等信息的識別問題。
模式識別的主要目標是用計算機模擬人的識別能力,運用知識表達和推理方法,主要從圖形、圖像和語音抽取出模式,表征或刻畫被識別對象類屬特有的信息模型。模式識別前,先提取樣例模式,通過模式辨識或機器學習識別出分類知識,并對新的待識別模式進行類比判決。
目前有基于模式、基于判別函數、基于統計決策、神經網絡、自適應等模式識別方法。
理解包括自然語言、圖形和圖像的理解,是智能系統進行交流的關鍵。
自然語言理解需要大量知識表示方法和推理技術,在機器翻譯和語音理解程序方面取得了長足進步。
機器視覺在圖像處理基礎上,需要模式識別、機器學習理解視覺對象。由低層視覺提取對象特征,通過機器學習理解視覺對象。
3,5系統與建造
自從1965年第一個專家系統DENDRAL問世后,出現了各種實用的系統。專家系統的發展依托大量知識表示技術和推理技術,是最先發展的智能系統。
Agent系統是典型的分布式智能系統,由多個智能個體協作或競爭體現智能,是比群智能高級的社會智能。Agent系統采用了知識表示、推理、機器學習、模式識別等領域知識。
智能機器人是一個具有感知機能、運動機能、思維機能、通信機能的Agent系統,需要Agent理論和多Agent協同系統的技術支持。機器人是人工智能標志性研究成果,是一個實用的Agent系統。是人工智能多個基礎應用的綜合,同時依據了融合了多種基礎理論。
4 結論
人工智能源于數理邏輯,20世紀30年代開始用于描述智能行為。并在計算機上實現了邏輯演繹系統。正是這些符號主義者,首先采用“人工智能”這個術語,后來又發展了啟發式算法一專家系統一知識工程理論與技術。專家系統的成功開發與應用,為人工智能走向工程應用和實現理論聯系實際奠定了基礎。在AI其它學派出現之后,符號主義仍然是主流派。
人工智能課程總結范文6
人工智能在培訓行業的應用,除非已經進化到像電影《黑客帝國》中的場景一樣,可將所需知識直接下載至腦中,否則,還是得回歸學習的本質。人工智能無法替代人類學習,學習是個性化的,并且還要經歷內化的過程,才能最終完成。然而,這并不代表人工智能在培訓行業沒有用武之地,恰恰相反,“智能化”學習技術的發展正為培訓行業注入一股新動能,而其中有些應用值得重點關注。
輔助系統
在學習環境中,與傳統學習管理平臺注重管理與記錄不同的是,智能化輔助系統會提供給學習者(learner)個性化的反饋。學習者參加完測驗后,可以更好地了解自己的弱項,進一步獲取相關的學習資源及后續所建議的學習路徑。智能化輔助系統扮演了助教的角色,有效指導并促進學習者的學習。在工作環境中,智能化輔助系統可以依照角色或流程等屬性,即時提供給任務執行者(performer)個性化且適量的內容,扮演了教練的角色,加速問題解決并提升工作成效。
課程規劃
想像一下,你所經歷的學習與工作都留下了記錄,你曾經去過哪兒、看過什么、讀過什么,都被記錄分析。之后通過電腦演算模型,人工智能就可以根據你的程度與需求,為你匹配相關的資源,選取真正對你有用的內容,提供多元與個性化的學習歷程(learning experience),從而摒棄以往齊頭并進式的課程規劃。
內容資源
通過學習元件(learning objects)或知識元件(knowledge objects)在元數據(meta data)的標簽,內容資源可以具備學習者能力、角色、工作場景及業務流程等屬性。之后,結合智能推薦引擎,內容便可以依照單一或多元屬性呈現,作為獲取知識的來源被自動推送給學習者,或者作為問題解決的資料來源被推送給任務執行者。
精確搜索
語言可能是模棱兩可的,通過建立知識圖譜(knowledge graph),學習者可以快速縮小搜索范圍。智能化搜索也可以更好地理解學習者搜索的信息,總結出與搜索話題相關的內容。由于知識圖譜構建了一個與搜索結果相關的完整知識體系,所以學習者往往會獲得意想不到的發現。在搜索中,學習者可能會了解到某個新的知識或新的聯系,從而進行一系列全新的搜索與學習。
數據分析
學習無處不在,當學習或者歷程記錄可以通過xAPI這類學習技術標準,來收集多元數據的時候,學習數據就不會只停留在以往SCORM課件閱讀的紀錄模式,而是可以實現學習歷程數據的集中。過去單純的學習記錄也可以上升到預警及預測的層次,甚至通過數據收集與深度分析,提供學習者如何建構所學內容的意義、如何形成理解、以及學習過程中所做決策的報告,這對教學設計會有莫大的幫助。
項目運營