前言:中文期刊網精心挑選了數學建模的主要步驟范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。
數學建模的主要步驟范文1
中圖分類號:G642.3 文獻標志碼:A 文章編號:1674-9324(2012)08-0106-03
運籌學應用分析、試驗、量化的方法,對經濟管理系統中人、財、物等資源進行統籌安排,為決策者提供有依據的最優方案,以實現最有效的管理。該課程主要培養學生在掌握數學優化理論的基礎上,具備建立數學模型和優化計算的能力。本文提出一種新的教學改革思路,將運籌學和數學建模兩門課程合并為一門課程,即開設大容量交叉課程《運籌學與數學建?!穪砣〈哆\籌學》和《數學建模》兩門課程,采用案例教學和傳統教學相結合的教學方法,數學建模和優化算法理論并重的教學模式。這樣既可以避免出現極端教學和隨意選取教學內容的現象,又可以將新穎的教學方法與傳統方法相結合,按照分析問題、數學建模、優化算法理論分析及其方案制定、實施等解決實際問題步驟展開教學。下面就該課程開設的必要性、意義、可行性、注意事項及其存在問題等方面進行分析。
一、開設《運籌學與數學建模》課程的必要性
1.一般院校的運籌學課程的教學課時大約為64或56(包含試驗教學),所以教學中不能囊括運籌學的各個分支。一方面,由于課時量不足,教師選取教學內容時容易出現隨意性和盲目性;另一方面,教學中為強化運籌學的應用,消弱理論教學,從而導致學生對知識的理解不透徹,在實際應用中心有余而力不足。
2.運籌學解決實際問題的步驟是:(1)提出和形成問題;(2)建立數學模型;(3)模型求解;(4)解的檢驗;(5)解的控制;(6)解的實施。大部分教學只涉及步驟(3),即建立簡單數學模型,詳細介紹運籌學的算法理論,與利用運籌學解決實際問題的相差甚遠。因此,學生仍然不會應用運籌學解決實際問題,從而導致學生認為運籌學無用。
3.數學建模課程包含大量的運籌學模型;運籌學在解決實際問題的環節中包含建立數學模型步驟。目前兩門課程分開教學,部分內容重復教學,浪費教學課時。
二、開設《運籌學與數學建模》課程的意義
1.激發學生的學習動機,培養學習興趣。該課程包含數學建模和運籌學兩門課程的內容,內容容量大,教學課時豐富,教學過程中能夠以生產生活中的實際問題為案例,分析并完整解決這些問題,創造實際價值,使學生認識到該課程不但對未來的工作很重要,而且還有可以利用運籌學知識為企業或個人創造價值,改變運籌學“無用論”的觀念。從而激發學生的學習動機,產生濃厚的學習興趣。
2.合理處理教學內容。運籌學與數學建模的課時量相對充足,能夠安排更多的內容,能夠系統、完整地介紹相關知識,在一定程度上避免了運籌學內容安排的隨意性和盲目性。
3.促進教學方法改革。運籌學與數學建模的教學不再是簡單的數學建模和理論證明,教學內容豐富、信息量大,傳統的一支筆一本教案一塊黑板的模式不再適用,需尋找新的教學方法,促進了多種教學方法的融合。
4.培養學生綜合能力。實際案例源于社會、經濟或生產領域,需要用到多方面的知識,但學生不可能掌握很多專業知識。因而,在解決實際案例的過程中,需要查閱大量的相關文獻資料,并針對性閱讀和消化。而且,實際案例數據量大,需要運用計算機編程實現。因此,通過該課程的學習,可以提高學生多學科知識的綜合運用能力和運用計算機解決實際問題的能力。
5.改變教學考核方式。教學改革后,教學內容已延伸到運用優化知識解決實際案例的整個過程。教學過程中既有對實際案例分析、建模,又有算法介紹、求結果的檢驗及其最終方案的實施。因而,傳統的單一閉卷考試改為筆試和課后論文相結合的方式。
三、開設該課程的可行性
1.運籌學和數學建模互補性、遞進性使得開設該課程在理論上可行。數學建模是利用數學思想去分析實際問題,建立數學模型;運籌學是利用定量方法解決實際問題,為決策者提供決策依據。由此可見,建立數學模型為運用運籌學解決實際問題的重要步驟。所以,運籌學可以認為是數學建模的進一步學習。同時,運籌學模型為數學建模課程介紹的模型中的一部分,并且運籌學處理實際問題的方法為數學建模提供了專業工具。因此,運籌學與數學建模在內容上是互補的。由此可知,開設該課程在理論上是可行的。
2.計算機的發展使得開設該課程在操作上可行。隨著計算機的發展,能很快完成大數據量的計算,實際案例的數據分析、數學建模及其求解能快速實現,從而使得該課程的教學工作能順利開展。
3.大學生的知識儲備使得開設該課程在基礎上可行。學習該課程的學生是高年級學生,通過公共基礎課和專業基礎課的系統學習,分析問題、解決問題的能力得到進一步提高。同時,運籌學和數學建模所需基礎知識類似,學習該課程所需的線性代數、概率論與數理統計、高等數學及微分方程等課程也已經學習,運用運籌學與數學建模知識解決實際案例所需的基礎知識已經具備。因此,開設該課程是可行的。
數學建模的主要步驟范文2
關鍵詞:數學建模策略;教學原則;
作者簡介:李明振(1965-)男,河南延津縣人,副教授,主要從事數學建模的認知與教學研究.
自20世紀70年代起,英、美等國的許多大學相繼開設了數學建模課程。迄今為止,我國絕大多數高校也已相繼將數學建模作為理科專業的必修課程之一。經過多年的實踐探索,數學建模教學取得了一定成效,但效果并不盡人意[1-3]。究其重要原因之一在于,缺乏科學有效的數學建模教學理論指導。亟需深入開展數學建模課程的教學研究,建立科學有效的數學建模教學理論,以有效指導數學建模教學實踐。
所謂數學建模策略是指在數學建模過程中選擇解決方法、采取解決步驟的指導方針,是選擇、組合、改變或操作與當前數學建模問題解決有關的事實、概念和原理的規則。它們在數學建模過程中發揮著重要作用,以有效的數學建模策略為指導,將有助于減少數學建模過程中試誤的任意性和盲目性,節約數學建模所需時間,提高數學建模的效率和成功概率。數學建模策略一旦被學生真正理解、熟練掌握、自覺運用和廣泛遷移,即轉化為思維能力。研究表明,優秀學生與一般學生在數學建模的表征策略、假設策略、模型構建策略、調整策略等方面均存在差異。優秀學生在數學建模策略的掌握與運用方面具有較高水平,而一般學生的數學建模策略運用水平較低[4]。數學建模策略差異是優生與一般生數學建模水平差異的主要原因。掌握一些有效的數學建模策略,既是數學建模教學的重要目標,也是提升學生數學建模能力的重要步驟,實施數學建模策略的教學能有效培養學生的數學建模能力,應將數學建模策略的教學放在重要位置。開展數學建模策略的教學研究,不僅能拓展和豐富數學建模教學理論,而且對數學建模教學實踐具有重要指導意義。然而,迄今未見關于數學建模策略教學問題的研究。鑒于此,基于數學建模的認知與教學研究[5-7]和多年從事高校數學建模教學的實踐,筆者認為,數學建模策略的教學應遵循如下四個原則。
一、基于數學建模案例
策略性的知識是具有抽象性、概括性的知識,這種知識的學習必須和具體的經驗結合起來,才能真正領悟與掌握。否則,只會是死記策略性知識的字詞,而難以真正理解與熟練運用。因此,數學建模策略的教學應基于對數學建模案例的解析與探索,使學生在多種新的現實問題情境中“練習”利用所要習得的數學建模策略,實現數學建模策略的經驗化。為此,在數學建模教學中,一方面,針對每種數學建模策略的案例練習均應涵蓋豐富的現實問題,應在多個現實問題的應用中向學生揭示數學建模策略的不同方面。由于不同的問題蘊涵不同的情境,運用同一數學建模策略的不同問題,會反映出數學建模策略的不同側面與特性。因此,對某種數學建模策略應擬定多個可運用的不同情境的現實問題案例,從而為該數學建模策略提供豐富的情境支持;另一方面,應注重審視與解析每個現實問題的解決過程所涉及的多種數學建模策略,通過對同一現實問題的多種數學建模策略運用的審視與解析,厘清各種數學建模策略之間的關系。一個數學建模問題案例實質上意味著多種數學建模策略在此特定的情境中發生特定的聯系,解析一個數學建模問題的過程就是將多種數學建模策略遷移至此情境的過程,關注每個現實問題所包含的多種數學建模策略的應用,有助于理解和掌握多種數學建模策略在解決同一情境問題時的有效協同。實施同一數學建模策略的多個現實問題建模案例應用和同一現實問題建模案例的多種數學建模策略分析相交叉的教學,能夠有效加強記憶的語言表征與情節表征之間的聯系,不僅可使學生形成對數學建模策略的多維度理解,將數學建模策略與具體應用情境緊密聯系起來,形成背景性經驗,而且有利于針對現實問題情境構建用于引導解決現實問題的數學建模策略的應用模式。將抽象的數學建模策略與鮮活的現實問題情境相聯系,加強了理性與感性認知的有機聯系,有助于促進數學建模策略學習的條件化。即知曉數學建模策略在何種條件下使用,一旦遇到適合的條件就能自覺使用,從而有助于增強數學建模策略的靈活運用和廣泛遷移。
二、寓于數學建模方法
所謂數學建模方法是指為解決現實問題而構造刻劃現實問題這一客觀原型的數學模型的方法。數學建模方法在數學建模中具有重要作用。數學建模策略與數學建模方法之間存在密切的關系。一方面,數學建模方法從層次上低于數學建模策略,是數學建模策略對數學建模過程發生作用的媒介和作用點,離開數學建模方法,數學建模策略將難以發揮作用;另一方面,數學建模策略是對數學建模問題解決途徑的概括性認識和通用性思考方法,是數學建模方法對數學建模過程發生作用的指導性方針,引導主體在何時何種情況下如何運用數學建模方法。如果缺乏數學建模策略的有效指導,數學建模方法的運用就會陷于盲目,勢必導致無從下手或誤入歧途。數學建模教學中,如果僅關注于數學建模方法而忽視數學建模策略,那么,所習得的數學建模方法就很難遷移運用于新的數學建模問題情境;如果僅關注數學建模策略而忽視數學建模方法,那么所獲得的數學建模策略難免限于表面化和形式化,從而難以發揮其對數學建模方法和數學建模過程的指導作用。因此,在數學建模策略教學中,應寓數學建模策略于數學建模方法教學之中,應有意識加強數學建模策略與數學建模方法之間的聯系。為此,應基于具體的數學建模案例,盡力挖掘所用數學建模策略與所用數學建模方法之間的內在聯系與對應規律。一種數學建模策略可能會對應多種數學建模方法,同樣,一種數學建模方法也可能對應多種數學建模策略。應在數學建模策略與其所對應的數學建模方法之間對可能的匹配關系進行審視與解析,以揭示所運用的數學建模策略之間、數學建模方法之間以及二者之間的內在協同規律。
三、揭示一般思維策略
一般思維策略是指適用于任何問題解決活動的思維策略。它包括:(1)解題時,先準確理解題意,而非匆忙解答;(2)從整體上把握題意,理清復雜關系,挖掘蘊涵的深層關系,把握問題的深層結構;(3)在理解問題整體意義的基礎上判斷解題的思路方向;(4)充分利用已知條件信息;(5)注意運用雙向推理;(6)克服思維定勢,進行擴散性思維;(7)解題后總結解題思路,舉一反三等等。此外,模式識別、媒介過渡、進退互用、正反相輔、分合并用、動靜轉換等也屬于一般思維策略范疇。通過深度訪談發現,相當一部分學生希望老師在數學建模教學時教給他們一些一般思維策略,但數學建模教學實踐中,往往忽視一般思維策略的教學。一般思維策略在層次上高于數學建模策略,在數學建模過程中,它通過數學建模策略影響數學建模思維活動過程。而數學建模策略是溝通一般思維策略與數學建模過程的紐帶與橋梁,受一般思維策略的指導,是一般思維策略指導數學建模過程的作用點。離開一般思維策略的指導,數學建模策略的作用將受到很大限制。因此,在數學建模策略教學過程中,應向學生明確揭示數學建?;顒舆^程所蘊含和所運用的一般思維策略,并鼓勵學生在數學建模實踐活動中有意識地使用,使學生充分領悟一般思維策略對數學建模策略運用的重要指導作用,增強數學建模策略運用的靈活性,實現數學建模策略的遷移,提升數學建模能力。
數學建模的主要步驟范文3
關鍵詞: 數學建模 自主學習 實踐能力 想象力
作為一線教師,我們如果不了解教育發展的動向,就會很快被淘汰。從《全日制義務教育數學課程標準》的理念來看,義務教育階段的數學課程,其基本目標是促進學生全面、持續、和諧地發展,因此,在學生獲得知識的同時,還應強調學生在思維能力、情感態度與價值觀等方面得到發展。為此,我對數學模型法做了學習和探討。
數學模型法是數學方法論中研究數學的基本數學方法之一。數學方法論在20世紀已由龐加萊、阿達瑪、波利亞和徐利治等數學家研究和提倡,受到數學界和數學哲學界的重視。在新世紀,數學方法論是以數學研究方法為對象,探討各種數學方法的性質、特點和聯系,并從個性中找出共性、從個別中探求一般,從而得出關于數學研究方法的一般性原則。就數學來講,具體地說,是抽象的數學模型。因此,數學模型方法是連接實踐與認識、感性與理性、主體與客體的手段和橋梁。數學家通過數學模型法不斷從客觀事物系統中提煉出數學問題,或者說不斷從現實問題中提煉出數學問題,使數學保持強大的生命力。另一方面,通過應用已有的數學知識于數學模型,解決現實問題,證實自身的價值和真理性。由此可見,數學模型法在數學方法論中的重要性。[1]
通過近幾年的了解和考察,我發現,無論在中考試卷,還是在平時的復習資料中,關于數學模型之類的題目,都層出不窮,并且分值還在不斷增加。作為一線教師,我們應該對此加以重視,多搜集一些關于數學建模方面的資料,對此加以整理,建立一些切實可行的解題方案,并在平時的教學中加以應用,實踐證明,對學生的發展和提高有不可忽視的作用。
關于數學模型法的步驟,隨著人們對它不同的理解而出現不同的步驟。徐利治教授把數學模型法劃分為3個步驟:分析現實原型關系結構的本質屬性,確定數學模型的類別;確定所研究的系統的主要矛盾、選擇主要因素;用數學語言表述對象及其關系。[2]
姜啟源教授把建立數學模型法分為7個步驟:模型準備;模型假設;模型求解;模型分析;模型檢驗;模型應用。這里所說的7個步驟,其實是使用數學模型方法解決事實問題的過程或步驟。對于數學模型的建立來說,到第3步就已經完成了。所以就數學模型法而言,只要3個步驟:
(1)了解生產和科學的實踐中存在的現實問題及其背景,掌握對象的特征,以及各種有關信息,確定所要建立的數學模型的類型;
(2)根據研究對象的特性以及建立模型的目的,分析構成問題的因素,抓住主要因素,略去次要因素,作必要的簡化,并用精確的語言作一些必要的假設;
(3)根據假設和已知的信息、知識,以及存在于研究對象中的數量關系,用抽象的數學語言表述現實問題,得到所需要的數學模型。[3]
為此,我認真地鉆研數學模型法的理論知識了解該理論的內涵和外延,同時把它應用在教學中。
在實際生活中,許多問題與我們所學知識密切地聯系在一起,只要稍作改變就可以把問題迎刃而解,同時使學生感到知識就在生活中,知識就在我們身邊。
【題目】
有一拋物線形拱橋,橋頂O離水面AB高4米時,水面寬度AB為10米,如圖建立直角坐標系。(1)若水面上漲0.76米,此時水面CD寬度為多少米?(2)水面上漲后,有一竹排運送一只貨箱欲從橋下經過,已知貨箱寬4米,高2.5米(竹排與水面向平),問該貨箱能否順利通過此橋?
【解答】
(1)由題意可知,點A,B的坐標分別為(-5,-4),(5,-4).設拋物線的解析式為y=ax,把x=-5,y=-4代入y=ax,得-4=25a,解得a=-,y=-x.
若水面上漲0.76米,由4-0.76=3.24,得到C,D的縱坐標為-3.24,把y=-3.24代入y=-x,得-3.24=-x,解得x=±4.5.點C,D的坐標分別為(-4.5,-3.24),(4.5,-3.24),于是CD=9米.
(2)如圖,令貨箱寬的中心點恰好位于水面的中心,可設貨箱外緣所對應拋物線上的點E的坐標為(2,m),則m=-×4=-0.64即EF=3.24-0.64=2.6米>2.5米,該貨箱能順利通過.[4]
在第(2)問的解法中,是從貨箱的長入手,從而得到高,再與貨箱的實際的高相比,最后得到答案。這種方法固然很好,但是我在實際教學中發現,有一部分學生是從高入手,具體過程整理如下:
解法2:如圖所示,令貨箱寬的中點也是恰好位于水面的中心由(1)知ON=3.24米.MN=2.5米,OM=3.24-2.5=0.74米,根據題意得:-0.74=-x,解得x≈±2.15058.PE=2.15058×2=4.30116>4.該貨箱可以順利通過.
我認為把這兩種方法有機結合起來,能更好地開發學生的智力。多掌握一種方法,不就擴大了生存的空間嗎?當然在現實生活中,有很多類似的數學模型,我們要多注意身邊的現象,把它與學過的知識密切地聯系起來,做到學以致用。
綜上所述,數學建模是數學學習的一種新的方式,它為學生提供了自主學習的空間,有助于學生體驗數學在解決實際問題中的價值和作用,體驗數學與日常生活和其他學科的聯系,體驗綜合運用知識和方法解決實際問題的過程,增強應用意識;有助于激發學生學習數學的興趣,發展學生的創新精神和實踐能力。[5]同時數學建模最主要的是培養學生的合作交流能力,因為數學建?;顒映3J切〗M分工合作、密切配合、相互交流、集思廣益,這種相互合作的精神是社會生活中極為需要的。創造能力尤為重要,數學建模沒有現成的答案,也沒有固定的模式或通式,建模的過程有較大的靈活性,因此,數學建模就給學生提供了一個自我學習、獨立思考、認真探索的實踐過程,提供了一個發揮創造才能的條件和氛圍,通過建模,學生要從不同的問題中探出本質特性,這樣有助于培養學生的想象力和洞察力[6]。
參考文獻:
[1]林夏水.數學哲學[M].商務印書館,2003.
[2]徐利治.數學方法論選講[M].華中工業學院出版社,1983.
[3]姜啟源編.數學模型[M].高等教育出版社,1987.
[4]王華炎.中學數學教學參考[J].2007,(3).
數學建模的主要步驟范文4
關鍵詞:數學模型;數學建模;模型應用
21世紀是知識經濟的時代,數學作為一種工具不僅在科技方面,而且在人們日常生活和工作中有著廣泛的應用。以計算機信息技術的廣泛應用為標志,數學滲入了自然科學和社會科學的各個領域。時至今日,從社會學到經濟學,從物理到生物,幾乎每一個學科領域都有數學的身影。另一方面,自第二次世界大戰以來,針對技術、管理、工業、農業、經濟等學科中的實際問題發展起來一批新的應用數學學科。社會對公民的數學應用能力及創新能力等方面的要求不斷提高,這些對數學教育提出了更多、更新的要求,促使人們對數學教育的現狀和功能進行深入的思考,數學建模進入中學,正是在這種情況下實現的。
一、數學建模的有關概念
1.數學模型
數學模型指對于現實世界的某一特定對象,為了某一特定的目的,作出一些必要的簡化和假設,運用適當的數學工具得到的一個數學結構。它或者能夠解釋特定現象的現實狀態,或者能預測對象的未來狀況,或者能提供處理對象的最優決策或控制等。數學中的各種基本概念,都以各自相應的現實原型作為背景而抽象出來的。各種數學公式、方程式、定理、理論體系等,都可稱為數學模型。如函數是表示物體變化運動的數學模型,幾何是表示物體空間結構的數學模型。
2.數學建模
數學建模是建立數學模型并用它解決問題這一過程的簡稱,也就是通過對實際問題的抽象、簡化,確定變量和參數,并應用某些“規律”建立起變量、參數間的關系的確定的數學問題,求解該數學問題,解釋、驗證所得到的解,從而確定能否用于解決實際問題的多次循環、不斷深化的過程。《普通高中數學課程標準》中認為:數學建模是運用數學思想、方法和知識解決實際問題的過程,已經成為不同層次數學教育的重要內容和基本內容。
3.中學數學建模
(1)按數學意義上的理解
在中學中做的數學建模,主要指基于中學范圍內的數學知識所進行的建?;顒?,同其他數學建模一樣,它仍以現實世界的具體問題為解決對象,但要求運用的數學知識在中學生的認知水平內,專業知識不能要求太高,并且要有一定的趣味性和教學價值。
(2)按課程意義理解
它是在中學實施的一種特殊的課程形態。它是一種以“問題引領、操作實踐”為特征的活動型課程。學生要通過經歷建模特有的過程,真實地解決一個實際問題,由此積累數學、學數學、用數學的經驗,提升對數學及其價值的認識。其設置目的是希望通過教師對數學建模有目標、有層次的教與學的設計和指導,改變學生的學習過程和學習方式,實現激發學生自主思考,促進學生交流,提高學生學習興趣,發展學生創新精神,培養學生應用意識和應用數學的能力,最終使學生提升適應現代社會要求的可持續發展的素養。
二、數學建模的步驟
數學建模一般有以下6個步驟。
1.建模準備
了解問題的實際背景,明確建模目的,盡量掌握建模對象的各種信息和數據,尋求實際問題的內在規律,用數學語言來描述問題。
2.建模假設
根據實際對象的特征的建模的目的,對實際問題進行必要簡化或理想化,并利用精確的語言提出一些恰當的假設,這是建模至關重要的一步。如果對問題的所有因素一概不考慮,無疑是一種有勇氣但方法欠佳的行為,所以要充分發揮想象力、洞察力和判斷力,善于辨別主次,而且為了是處理簡單,應盡量使問題線形化、均勻化。
3.模型建立
根據問題的要求和假設,利用對象的內在規律和適當的數學工具,構建各變量之間的數學關系(數學模型)。這時,我們便會進入一個廣闊的應用教學天地,這里在高等數學、概率:“老人”的膝下,有許多可愛的“孩子們”,“他們”是圖論、排隊論、線性規劃、對策論等。一般來說,在建立數學模型時可能用到數學的任何一個分支。同一個實際問題還可以用不用方法建立不同的數學模型。當然數學模型是為了讓更多的人明了并能加以應用,所以在達到預期目的的前提下,應該盡可能地采用簡單的數學方法建立容易實現的模型。
4.模型求解
利用獲取的數據資料,對模型的所有參數做出計算(估計),可以采用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代數學方法,特別是計算機技術。一道實際問題的解決往往需要復雜的計算,許多時候還得將系統運行情況用計算機模擬出來,因此,編程和熟悉數學軟件包便很重要。
5.討論與驗證
根據模型的特征和模型求解結果,繼續分析討論。將模型分析結果與實際情況進行比較,以此來驗證模型的準確性、合理性和適合性。如果模型與實際較吻合,則要對計算結果給出其實際含義,并進行解釋,說明模型的使用范圍和注意事項。如果模型和實際吻合較差,則應該修改假設,再次重復建模過程,直至獲得滿意的結果。
6.模型應用
把所得到的數學模型應用到實際問題中去,應用方式因問題的性質及建模的目的而異。由上可見,這是個系統的內容,我們有必要對它的教育價值進行分析。
三、中學開展數學建模教學的意義
1.數學建模教學可以激發學生學習動機和興趣
我們都說興趣是最好的老師,現代教育學和心理學的研究表明,當學習的材料與學生已有的知識和經驗相聯系時,學生對學習才會感興趣。學生缺乏學習數學的興趣和動力一直是困擾中學數學教育的一個重要問題。這個問題可以通過將數學建模的思想融入常規教學來解決。有許多學生認為:“數學源于生活,生活依靠數學,我喜歡將課堂上所學的知識用于生活中”;“平時做的題都是理論性較強,實踐性較弱的題,都是在理想化狀態下進行討論,而數學建模問題貼近生活,充滿趣味性,我們愿意研究這樣的問題”;“數學建模使我更深切地感受到數學與實際的聯系,感受到數學問題的廣泛,使我們對學習數學的重要性理解得更為深刻,也使我們更加重視實際應用”。數學建模可以使學生領略到數學的魅力,對數學的學習產生更濃厚的興趣。數學建模把課堂上的數學知識延伸到實際生活中,呈現給學生一個五彩繽紛的數學世界。數學建模問題如銀行存款、手機付費等方面的問題都貼近實際生活,有較強的趣味性,學生容易對其產生興趣,這種興趣又能激發學生去更努力地學習數學。
2.中學數學建模有利于培養學生運用數學的意識
目前的中學生已學習了很多數學知識,但大多數學生只會用這些知識來解決課本上的習題,對于實際問題不會把所學知識靈活應用,使實際問題教學化,更談不上創新。數學建模為數學理論和具體實際應用之間架起來了一座橋梁。事實證明,只有將數學與現實背景緊密聯系在一起,才能幫助學生真正獲得富有生命力的數學知識,使他們不僅理解這些知識,而且能夠應用。數學建模的問題都來源于生活,問題的背景都是學生所熟悉的。例如,銀行貸款問題、電視塔的高度與信號覆蓋面積問題、商場打折銷售與購物方案問題等。數學建模就是將這類實際問題適當簡化,找出變量與變量之間的關系,轉化成數學模型,然后利用數學知識及計算機等工具處理模型。因此,數學建模的過程正是幫助學生學會用數學的思想、方法、語言來表達、描述和解決實際問題的過程。
3.中學數學建模有利于培養學生勇于探索、積極主動的學習方式
在數學建模中學生是主體,老師充當學生的參謀與仲裁。數學模型的建立是通過學生對知識點和概念的操作,自己去發現、設問、設計、探索、歸納、創新的過程,能激發學生對數學的好奇心與求知欲,鍛煉克服困難的意志。社會的發展需要終身教育,而學生在學校只能獲得其需要的部分知識和初步能力,更多的必須在其后來的人生歷程中依靠自主探索、主動學習而獲得,只有不斷地充實自我才能適應不斷變化的社會需要。
4.中學數學建模有利于培養學生想象力、聯想力和創造力
由于數學建模的問題都是開放性的,沒有統一答案,沒有現成模式,也不可能直接利用公式得出結果。因此,需要學生通過收集有價值的數據、查閱大量的文獻資料及利用網絡去獲取有用的知識,分析問題與數學之間的關系,確定一個數學模型,然后進行解決。數學建模過程是一種創造性過程,它需要一定水平的觀察力、想象力以及一些靈感和頓悟,往往要求學生充分發揮聯想,要求學生面對錯綜復雜的實際問題,能快速地抓問題的要點,剔除冗長的信息,把握其本質,使問題趨于明確。學生要經歷從生活語言、其他學科語言到數學語言的多層次轉化,這些將非常有利于鍛煉學生的想象力、聯想力和創造力。
5.中學數學建模有利于培養學生自學能力和查閱文獻的能力
數學建模的對象常常是一些非數學領域的實際問題,需要的很多知識也是學生原來沒有學過的,老師不可能用過多的時間為學生講授,只能通過學生自學和小組討論來進一步掌握,這將有助于培養學生的自學能力,同時在參加建模過程中,需要學生在有限的時間內從大量資料中迅速找到和汲取自己所需信息,這可以鍛煉和提高學生使用資料的能力,這兩種能力都是學生將來從事工作和科研所必備的。
6.中學數學建模有利于培養學生的計算機應用能力及論文寫作與表達的能力
許多數學建模需要計算機才能完成,許多數學推理、計算、畫圖都需要相應的數學軟件幫助完成,大量的數據也要靠計算機來處理。很多模型的檢驗也要利用計算機模擬完成。建模論文的編輯、排版、打印也都離不開計算機。因此,通過數學建模將有助于提高學生使用計算機的能力。中學建模的結果常常需要解題報告或論文的形式寫出來,這就要求學生必須能夠將自己所做的工作用準確嚴密的語言表述出來。這也是對學生的寫作和表達能力的鍛煉。
7.中學數學建模有利于培養學生團結協作的精神
傳統教育過于強調人與人之間競爭的一面,我們的考試也需要考生單兵作戰,不需要也不允許彼此合作。現在中學生大多是獨生子女,凡事往往以自我為中心,很少考慮其他人的感受,因此與人合作的能力較差。較復雜問題的數學建模,由于要花費大量的時間和精力,經常以小組合作的形式開展。在同組成員中,有的數學基礎好,有的計算機好,有的擅長寫作,大家各取所長。這對培養學生相互合作的團隊精神極為有益。
四、我國開展數學建模教學的現狀
中國是一個數學教育大國,長期以來形成了一套完整的中學數學教育體系和培養人才的方法。中國學生數學基礎扎實、知識系統,有相當強的數學理解能力,在多次國際數學奧林匹克比賽中,成績斐然。但由于傳統的以知識灌輸為主的知識教育占主導地位,使教學模式和教育方式過于固定。隨著時代的進步和科技的發展,人們越來越覺得數學素質是一個人的基本素質的重要方面之一,而掌握和運用數學建模方法是衡量一個人數學素質高低的一個重要標志。受國際數學教育發展趨勢和社會需求的影響,我國中學數學醞釀并進行著一系列的改革,改革的主要目的是要把中學數學與我們周圍的現實世界適當聯系起來,使學生既能了解數學的用處,達到學以致用的目的,同時也是為了進一步激起廣大中學生學習數學的熱情,更生動活潑地掌握數學的思想和方法。數學建模進入中學正是我國數學教育改革下的產物。
1.數學建模及相關內容逐步進入中學課堂
受西方國家的影響,20世紀80年代初,數學建模課程引入到我國的一些高校,短短幾十年來發展非常迅速,影響很大。1989年,我國高校有4個隊首次參加美國大學生數學建模競賽。在美國大學生數學建模競賽的影響下,1992年11月底,中國工業與應用數學學會舉行了我國首屆大學生數學建模聯賽。從那以后,數學應用、數學建模方法、數學建模教學的熱潮也迅速波及中學,使得我國有關中學數學雜志中,討論數學應用數學建模方法、數學建模教學的文章明顯多了起來。教育部2003年頒布的《普通高中數學課程標準》把數學建模納入了內容標準中,明確指出:(1)在數學建模中,問題是關鍵。數學建模的問題應是多樣的,應是來自于學生的日常生活、現實世界、其他學科等多方面的問題。同時,解決問題所涉及的知識、思想、方法應與高中數學課程內容有聯系。(2)通過數學建模,學生將了解和體會解決實際問題的全過程,體驗數學與日常生活及其他學科的聯系,感受數學的實用價值,增強應用意識,提高實踐能力。(3)每一個學生可以根據自己的生活經驗發現并提出問題,對同樣的問題,可以發揮自己的特長和個性,從不同的角度、層次探索解決的方法,從而獲得綜合運用知識和方法解決實際問題的經驗,發展創新意識。(4)學生在發現和解決問題的過程中,應學會通過查詢資料等手段獲取信息。(5)學生在數學建模中應采取各種合作方式解決問題,養成與人交流的習慣,并獲得良好的情感體驗。(6)高中階段應至少為學生安排一次數學建模活動.還應將課內與課外有機地結合起來,把數學建模活動與綜合實踐活動有機地結合起來。這標志著數學建模正式進入我國高中數學,也是我國中學數學應用與建模發展的一個里程碑。
2.目前數學建模教學存在的問題
(1)數學課程標準沒有對數學建模的課時和內容作具體安排,也沒有統一的教材和規定,這就讓一線教師在具體實施過程中漫無邊際,無從下手。(2)專門針對中學數學建模的研究起步比較晚,很多中學教師教學負擔較重,在大學期間沒有接受過這方面的教育,對數學建模概念、建模意識、建模意義都很模糊。許多建模步驟不僅要求有相應的數學知識,還需要物理、化學、生物學方面的知識,還經常需要計算機進行模擬、計算、檢驗等。知識面狹窄,指導數學建模的教學就會存在諸多問題。(3)能適合中學生水平的建模問題不多。由于高中數學仍以初等數學為主,微積分、概率統計等高等數學知識深度有限,傳統的數學教學不夠重視數學的應用,涉及數學知識應用的地方較少,已有的習題和問題不完全適應新課程下的數學教學,所以中學的數學建模教學基本處于初始階段,這讓有心嘗試者有巧婦難為無米之炊的感覺。(4)搞數學建模和當年聯系實際,搞“三機一泵”,開門辦學付出如出一轍,有走回頭路之嫌。(5)相應的評價體系并沒有建立,由于高考指揮棒的影響,加上高中課時有限,完成教學計劃尚不十分從容,還要應付會考、高考,老師和學生不愿花費精力進行建模,即使開展也是講一些高考中的應用題.
五、如何開展數學建模教學
數學模型是數學知識與數學應用的橋梁,研究和學習數學模型,能幫助學生探索數學的應用,產生對數學學習的興趣,培養學生的創新意識和實踐能力,加強數學建模教學與學習對學生的智力開發具有深遠的意義,現就如何進行高中數學建模教學談幾點體會。
1.要重視各章前問題的教學,使學生明白建立數學模型的實際意義
教材的每一章都由一個有關的實際問題引入,可直接告訴學生,學了本章的教學內容及方法后,這個實際問題就能用數學模型得到解決,這樣,學生就會產生創新意識,對新數學模型的渴求,實踐意識,要求學生學完后嘗試解決這一類問題。這是培養創新意識及實踐能力的好時機,要注意引導,對所考查的實際問題進行抽象分析,建立相應的數學模型,并通過新舊兩種思路方法,提出新知識,激發學生的求知欲,如不可挫傷學生的積極性,失去“亮點”。
2.通過應用題的教學滲透數學建模的思想與思維過程
學習應用題,使學生多方面全方位地感受數學建模思想,讓學生認識更多的數學模型,鞏固數學建模思維過程。
解應用題體現了在數學建模思維過程,要據所掌握的信息和背景材料,對問題加以變形,使其簡單化,以利于解答的思想。且解題過程中重要的步驟是根據題意列出方程,從而使學生明白,數學建模過程的重點及難點就是據實際問題特點,通過觀察、類比、歸納、分析、概括等基本思想,聯想現成的數學模型或變換問題構造新的數學模型來解決問題。
3.結合各章研究性課題的學習,培養學生建立數學模型的能力,拓展數學建模形式的多樣性與活潑性
在日常教學中注意訓練學生用數學模型來解決現實生活問題;培養學生做生活的有心人及生活中“數”意識和觀察實踐能力,如記住一些常用及常見的數據,如:自行車的速度,自己的身高、體重等。利用學校條件,組織學生到操場進行實習活動,活動一結束,就回課堂把實際問題化成相應的數學模型來解決。如:推鉛球的角度與距離關系;全班同學手拉手圍成矩形圈,怎樣圍才能使圍成的面積最大等,用磚塊搭成多米諾骨牌等。
總之,只要教師在教學中通過自學出現的實際的問題,根據當地及學生的實際,使數學知識與生活、生產實際聯系起來,就能增強學生應用數學模型解決實際問題的意識,從而提高學生的創新意識與實踐能力。
參考文獻:
[1]章士藻.數學方法論簡明教程.南京大學出版社,2006.
[2]黎海英,祝炳宏.新課程標準下的中學數學方法論.廣西教育出版社,2006.
[3]熊惠民.數學思想方法通論.北京:科學出版社,2010.
[4]袁振國.教育新理念.教育科學出版社,2002.
[5]朱水根.中學生數學教學導論.教育科學出版社,2001-06.
數學建模的主要步驟范文5
關鍵詞:數學建模;初中數學;應用
一、在初中數學應用題中建立數學模型的過程
建模能力是數學應用能力的核心,學生的應用題能力差,最根本原因還是建模能力不強。要提高學生的建模能力,就要求教師在平時教學中不能只重視結果,而應重視展示思維過程,引導學生分析探索問題,教會學生思考。初中數學應用題中建立數學模型的過程主要包括四個步驟:
1.認真審題
建立數學模型的前提是認真審題。由于初中應用題已經具有一定的篇幅和內容,涉及比較多的專有名詞和數學概念。因此,在讀題目的過程中應保持認真、仔細、耐心。對應用題的問題背景、主要已知事項有比較深刻的把握,盡可能掌握更多的建模信息,挖掘應用題所考查的數學知識與建模知識,還要弄清楚所求結論的限制條件等等。只有進行認真清楚的審題,才能建立合理科學的數學模型。
2.抽象分析
通過認真審題,學生對應用題已知條件與所求問題有所了解,就可建立適當的坐標系,把文字語言轉化為數學語言,將題目信息用數學符號表示出來,將數量關系通過數學公式或者圖形形象地表示出來。這一步是建立數學模型的主要步驟。
3.簡化問題
對應用題的主要問題進行簡化,抓住題目的主要事項,對題目的要求有所把握,明了問題所求內容,結合已有的數學知識,根據題目的數量關系,用精準的語言將問題簡化。
4.大膽假設
在符合實際的基礎上,對應用題的解題步驟與解題進行大膽的假設,這種假設并非憑空想象,而是必須符合一定規律和現實基礎。
二、初中數學應用題中數學建模的類型
在日常教學中,我們盡量采用“問題情境―建立模型―解釋―應用”的基本教學方式,讓學生在熟悉問題的情境中掌握重要的現代數學思想方法。那么,在應用題中常建立的數學建模有如下幾種:
1.建立幾何模型
建立幾何模型在應用題的解答中具有重要作用。研究發現,近幾年的應用題中概念較多、字母符號較多,文字敘述較繁瑣,這就增加了應用題的難度,通過建立直觀的幾何圖像有利于將復雜的關系清楚地表示出來,從而更順暢地解題。幾何模型使用范圍較廣,諸如測量、取料、剪裁、方案設計、美化設計等等均適用。解答此類問題的一般方法是認真分析題意,把實際問題進行抽象轉化為幾何圖形再進行求解。
2.建立函數模型
函數應用問題由于涉及的知識層面豐富,與生活的聯系緊密,解法靈活多變,因而受到數學出題者的青睞。要建立函數模型,解答函數問題,首先要根據題目條件建立函數關系,將實際問題模型化或結合函數圖象來挖掘解題思路。
3.建立統計模型
當題目涉及的數據比較多,內容比較雜,則宜建立統計模型,以便對數據進行收集、整理、分析,從而提高解題效率。
4.建立方程模型
由于現實世界的許多問題都可以用方程應用題的形式來展現,因而方程模型也是中國數學階段應用最普遍的數學模型。在建立方程模型時,教師應重點培養學生根據題旨尋找題目中的已知量、未知量之間的等量關系。近年來,出現了一些主要以對話、圖案、圖表、污損文字等形式來呈現題干內容的新穎題目,要求學生能閱讀、理解給出的材料并用相關知識解決實際問題。要建立方程模型解答應用題,關鍵是要對試題的信息進行觀察、比較、識別、篩選,從而找出最佳的解題方案。
三、數學建模在初中數學應用題中的應用
本文以建立函數模型為例,淺談如何在數學應用題中應用數學建模。
例,為迎接新世紀的到來,某市制作了一種煙花,已知這種煙花高0.55米,燃放時需把煙花安放在為它特制的高0.7米的支架上,煙火從煙花的頂部噴出,各個方向沿形狀相同的拋物線落下,根據設計,要求噴出的煙火在距離煙花1米處達到最大高度2.25米。
(1)按圖(乙)建立的平面直角坐標系,求煙花的煙火劃出的一條拋物線的解析式(其中x軸為地面所在直線,y軸為煙花所在直線,OA表示煙花與支架的高,B為煙火的最高點,C為煙火落地點)。
(2)若觀看者環繞在煙花的四周,在不考慮其他因素的情況下,問至少要離開燃放點多遠?
解:(1)由題意得,A(0,1.25),頂點B(1,2.25)。
設拋物線解析式為
y=a(x-1)2+2.25
把A點坐標代入,解得a=-1。
y=-(x-1)2+2.25
(2)由題意知,點C為拋物線與x軸的交點,當y=0時,由-(x-1)2+2.25=0,解得x1=2.5,x2=-0.5(不合題意,舍去)。
觀看者至少要離開燃放點2.5米遠。
總之,數學模型是聯系數學與現實世界的橋梁,在教學過程中進行數學建模思想的滲透,不僅可以使學生體會到數學的樂趣,還能使學生感覺到數學與生活的聯系,進而對數學產生更大的興趣。
參考文獻:
數學建模的主要步驟范文6
關鍵詞:數學建模;思想;應用;方法;分析
0引言
隨著自然科學的發展,利用數學等思想來解決實際問題,越來越受到人們的重視,數學作為一門歷史悠久的自然科學,是在實際應用的基礎上發展起來,但是隨著理論研究的深入,現在數學理論已經非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現有的數學理論來解決實際問題,成為了很多專家和學者研究的問題。通過實際的調查發現,要想利用數學來解決實際問題,首先要建立相應的數學模型,將實際的問題轉化成數學符號的表達方式,這樣才能夠通過數學計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數學模型組成的,計算機軟件之所以能夠解決實際問題,就是根據實際應用的需要,建立了一個相應的數學模型,這樣才能夠讓計算機來解決。
1數學建模思想分析
1.1數學建模思想的概念
數學是一門歷史悠久的自然科學,在古時候,由于實際應用的需要,人們就已經開始使用數學來解決實際問題,但是受到當時技術條件的限制,數學理論的水平比較低,只是利用數學來進行計數等,隨著經濟和科技水平的提高,尤其是在工業革命之后,自然科學得到了極大的發展,對于利用自然科學來解決實際問題,也成為了人們研究的重點,在市場經濟的推動下,人們將這些理論知識轉化成為產品。計算機就是在這種背景下產生的,在數學理論的基礎上,將電路的通和不通兩種狀態,與數學的二進制相結合,這樣就能夠讓計算機來處理實際問題,從本質上來說,這就是數學建模思想的范疇,但是在計算機出現的早期,數學建模的理論還沒有形成,隨著計算機軟件技術的發展,人們逐漸的意識到數學建模的重要性,發現利用數學建模思想,可以解決很多實際的問題,而數學建模的概念,就是將遇到的實際問題,利用特定的數學符號進行描述,這樣實際問題就轉化為數學問題,可以利用數學的計算方法來解決。
1.2數學建模思想的特點
如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學的發展,出現了很多具體的學科,利用這些不同的學科,可以解決不同的實際問題,而數學就是其中最重要的一門學科,而且是其他學科的基礎,如物理學科中,數學就是一個計算的工具,由此可以看出數學的重要性,進入到信息時代后,計算機得到了普及應用,無論是日常生活中還是工作中,計算機都有非常重要的應用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數學建模顯然更加科學,現在數學建模已經成為了一門獨立的學科,很多高校中都開設了這門課程,為了培養學生們利用數學解決實際問題的能力,我國每年都會舉辦全國性的數學建模大賽,采用開放式的參賽方式,對學生們的數學建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數學模型進行解決,但是執行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
2數學建模思想的應用
2.1計算機軟件中數學建模思想的應用
通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數學模型,在軟件開發的過程中,首先要進行需求的分析,這其實就是數學建模的第一個環節,對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數學來解決實際問題,而每個計算機軟件,都可以認為是一個數學模型,如在早期的計算機程序設計中,受到當時計算機技術水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數學模型,然后將這個模型轉化成相應的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應的參數后,就可以直接得到結果,不再需要人為的計算。
2.2數學建模思想直接解決實際問題
經過了多年的發展,現在數學建模自身已經非常完善,為了培養我國的數學建模人才,從1992年開始,每年我國都會舉辦一屆全國數學建模大賽,所有的高校學生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設置的也比較靈活,會有多個題目提供給隊員選擇,學生可以根據自己的實際情況,來選擇一個最適合自己的問題。而數學建模大賽舉辦的主要目的,就是讓學生們掌握如何利用數學理論,來解決實際問題,在學習數學知識的過程中,很多學生會認為,數學與實踐的距離很遠,學習的都是純理論的知識,學習的興趣很低,與一些實踐密切相關的學科相比,選擇數學專業的學生很少,而數學建模的出現,在很大程度上改善了這種情況,讓人們真正的了解數學,并利用數學來解決復雜的問題。受到特殊的歷史因素影響,我國自然科學發展的起步較晚,在建國后經歷了很長一段時間封,閉發展,與西方發達國家之間的交流比較少,因此對于數學建模等現代科學,研究的時間比較短,導致目前我國很少會利用數學建模來解決實際問題,相比之下,發達國家在很多領域中,經常會用到數學建模的知識,如在企業日常運營中,需要進行市場調研等工作,而對于這些調研工作的處理,在進行之前都會建立一個數學模型,然后按照這個建立的模型來處理。
2.3數學建模思想應用的發展
從本質上來說,數學是在實際應用的基礎上,逐漸形成的一門學科,但是受到當時技術水平的限制,雖然人們已經懂得去計算,卻并知道自己使用的是數學知識,隨著自然科學的發展,對數學的應用越來越多,而數學自身理論的發展速度很快,遠遠超過了實際應用的范圍,同時隨著其他學科的發展,數學變成了一種計算的工具,因此數學應用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現,對數學的應用達到了一個極限,人們在數學和物理的基礎上,制作出了能夠自動計算的機器,在計算機出現的早期,受到性能和體積上的限制,只能進行一些簡單的數學計算,還不能解決實際的問題,但是計算機語言和軟件技術的發展,使其在很多領域得到了應用,在計算的基礎上,能夠解決很多問題,而軟件程序的開發,其實就是建立數學模型的過程,由此可以看出,數學建模思想應用的第二階段中,主要是以現代計算機等電子設備的方式,來解決實際的問題。
3數學建模思想應用的方法
3.1分析問題
數學模型的應用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉化成數學符號,如果能夠直接用數學語言來進行描述,那么就可以容易的建立相應的數學模型,但是通過實際的調查發現,隨著經濟和科技的發展,遇到的問題越來越復雜,其中很多都無法直接用數學語言來描述,這就增加了數學建模的難度。由此可以看出,分析問題作為數學建模的第一個環節,也是最重要的一個環節,如果問題分析的不夠具體,那么將無法建立出數學模型,同時對數學模型的建立也具有非常重要的影響,通過實際的調查發現,能夠建立高效率的數學模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數學建模自身的發展,現在建立模型的過程中,對于一個實際的問題,經常需要建立多個模型,這樣通過多個數學模型協同來解決一個問題。
3.2數學模型的建立
在分析實際問題后,就要用數學符號來描述要解決的問題,這是建立數學模型的準備環節,要想利用數學來解決實際問題,無論采用哪種方式,都要轉化成數學語言,然后才能夠通過計算的方式解決,而數學模型的過程,就是在描述完成后,建立相應的數學表達式,通常情況下,在分析問題時,都能夠發現某種內在的規律,這個規律是數學建模的基礎。如果無法找到這個規律,顯然就不能利用現有的一些數學定律,從而建立相應的表達式,最后解決相應的問題,由此可以看出,分析問題的內在規律,是影響數學建模的重要因素,而這個規律的發現,除了在現有的數學知識外,也可以結合其他學科的知識,尤其是現在遇到的問題越來越復雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現在復雜的問題,經常需要建立多個模型。因此現在數學建模的難度越來越大,從近些年全國數學建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現了一些歷史上的難題,而不同學生根據自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數學建模的研究有限,尤其是與西方發達國家相比,實踐的機會還比較少。
3.3數學模型的校驗
在數學模型建立之后,對于這個模型是否能夠解決實際問題,具體的執行效率如何,都需要進行校驗,因此檢驗是數學模型建立最后的一個環節,也是非常重要的一個步驟,通常情況下,經過校驗都能夠發現模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數學模型的每個部分進行驗證,通過輸入特定的數據,看得到的結果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗模型的準確外,校驗還有另外一個作用,就是優化模型,在選定數據后,能夠看到數學模型計算的整個過程,這時就可以對具體的細節進行優化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學、合理,由此可以看出,校驗工作對于數學模型的建立,具有非常重要的意義。
4 結語
通過全文的分析可以知道,對于數學理論的應用,從很久之前就已經開始了,但是數學建模思想的出現,卻是隨著計算機技術的發展,逐漸形成的一門學科,電子計算機的出現,在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應的參數,就可以直接得到結果,這正是數學模型完成的任務,只是計算機的出現,省略了中間的計算過程,因此計算機軟件的方式,是數學建模思想最好的應用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應的程序。
參考文獻:
[1] 吳俊,勞家仁.高校師資管理中數學建模的應用研究[J],南京工業職業技術學院學報,2009(02):84-86
[2] 溫清芳,最優化方法在數學建模中的應用[J],寧德師專學報(自然科學版),2007(02):151-153
[3] 張紹艷,淺談數學建模思想的應用[J],科技咨詢導報,2007(20):233