數學核心素養培養的數學廣角教學設計

前言:尋找寫作靈感?中文期刊網用心挑選的數學核心素養培養的數學廣角教學設計,希望能為您的閱讀和創作帶來靈感,歡迎大家閱讀并分享。

數學核心素養培養的數學廣角教學設計

摘要:數學核心素養是數學知識、數學能力、情感態度和價值觀的綜合體現,主要包括數學運算能力、空間觀念、數據分析能力、數學抽象思維、數學推理能力、數學模型意識。人教版小學數學教材中的“數學廣角”蘊涵著豐富的數學核心素養元素,具有以數學問題為線索、注重數學模型構建、凸顯數學思想方法等特點。在教學中可結合生活實例培養學生數學抽象和歸納概括的能力;通過尋找規律、規則,再將這些規律、規則進行遷移,培養學生建構數學模型的意識。

關鍵詞:數學核心素養;數學教學;教學設計;數學廣角

1小學數學核心素養的內涵培養

數學學科核心素養是數學教學的重要目標。何小亞(2015)指出,數學核心素養是數學學科知識、數學應用能力和情感態度以及價值觀的綜合體現,它是指學生為了滿足自己和社會發展必備的數學品格和能力。劉久成(2017)認為小學數學核心素養包括:數學運算、空間觀念、數據分析、數學抽象、數學推理、數學建模[1]。曹培英(2017)認為小學數學核心素養可分為兩個層面,分別是數學內容層面和數學思想方面,這兩個層面包含的要素有運算能力、數據分析觀念、空間觀念、推理、模型和抽象。綜合上述觀點可見,核心素養是在學習和實踐后具備的適應社會發展的能力,主要包括模型、推理、抽象、數據分析和空間觀念等。在教學時,數學教師不僅要訓練學生的數學運算能力、數據分析能力,更要培養學生的數學思維?;谏鲜龇治?,筆者認為,數學核心素養是區別于其他學科素養而言的,數學學科特有的、能體現數學學科性質的素養,并且是在數學學習中形成的、能夠隨著學習的深入不斷提升的素養,具體包括:空間觀念、數學運算能力、數據分析能力、數學抽象思維、數學推理能力、數學模型意識。

2“數學廣角”中的數學核心素養要素分析

2.1“數學廣角”的特點分析

2.1.1以數學問題為線索

小學數學教材中的“數學廣角”都是以具體的數學問題為線索,旨在培養學生的數學思維和解決問題的能力。例如六年級下冊的“鴿巢問題”,先通過“5人各抽取一張撲克牌,至少有兩張牌是同花色”引入問題,再通過將筆放入筆筒建立數學模型解決實際問題。在教材各冊的“數學廣角”中,雖然例題設計的內容不同,但是每道例題都是圍繞數學問題情境展開,易于學生接受。

2.1.2注重數學模型構建

“數學廣角”貫穿小學二年級上冊至六年級下冊,具有綜合實踐性質。它是以生活中的現實問題為素材,以探索和建立數學模型為重點的一個單元,主要目的是培養學生的數學興趣,同時系統滲透數學思想,培養學生分析問題、解決問題的能力,提升學生的思維品質,讓學生在生活中感受、體會和運用數學。小學階段的模型建構主要是為了讓學生在學習過程中調動已有知識,在探究現實問題的過程中抽象出一種數學模型,并將這個數學模型應用于數學問題的解決過程,養成模型建構意識,提高數學應用能力。小學階段的建模還處于基礎水平,是建構數學模型的初級階段,主要目的是使學生學會自主建立模型解決問題,并在此過程中獲得經驗,養成主動建模的習慣。

2.1.3凸顯數學方法和思想

數學方法指用數學解決問題時使用的方式和手段,對數學方法進一步提煉、概括產生數學思想。[2]抽象思想、模型思想、優化思想等都是數學思想。數學思想是學生難以習得的、較為抽象的概念。數學方法和思想是教材呈現方式的暗線,它在教材中沒有清晰的說明,而是蘊含于日常教育教學過程中。教師在進行教學設計時要注重培養學生的數學思想。“數學廣角”通過列舉現實生活中的問題,使學生在解決問題的過程中感受數學思想的運用,培養學生自主解決問題的意識,再對此進行擴展,達到學以致用的目的。

2.2“數學廣角”中蘊涵的核心素養分析

教學的各個環節都蘊含了核心素養的培養。在進行教學設計時,教師必須明確本單元教學內容對應哪些核心素養,并將重點放在核心素養的培養上,提升學生相應的能力。因此,“數學廣角”的教學設計要格外注重學生的探索過程。每冊教材的“數學廣角”內容不同,對應的數學核心素養也不同,具體如表1所示:根據表1可知,人教版小學數學教材中“數學廣角”單元主要培養學生的數學抽象思維、數學推理能力和數學模型思想。通過梳理教材,教師可以更清楚、深入地把握知識點之間的聯系,教材從注重具體形象思維逐步過渡到重視抽象思維,由具體實踐操作過渡到抽象建模,內容難度呈現逐步上升的趨勢。

3基于數學核心素養培養的教學設計

教學設計是教學工作的重要環節。在構建數學核心素養培養體系時,要突出數學思維的形成,注重思維過程的嚴謹性、符號使用的正確性、對問題的分解、由繁化簡的轉化思想、具有條理性的數學邏輯思維以及推理的和諧原則等。[3]基于數學核心素養的小學數學教學設計以培養學生的數學核心素養為目標,以“數學廣角”為教學內容,創設現實的問題情景,通過活動探究整體設計教學過程。

3.1基于數學抽象思維培養的教學設計

抽象是數學最基本的思維方式之一,在一定程度上體現了數學的本質特征,具有重要的學科價值與教育價值。[4]抽象思維體現在小學各冊教科書中,例如小學四年級上冊的“數學廣角”主要體現的是優化思想。教材中的例題難度循序漸進,由淺入深,其中蘊含的數學思想也越來越抽象。例題1是“沏茶問題”,探討如何讓客人盡快喝到茶。教材給出了沏茶的步驟和流程圖,通過討論提出“等待水開時可以做什么”的問題,引發學生思考“兩件事同時進行”,使學生更易理解優化思想。例題2是“烙餅問題”,通過母女對話得到信息:每次最多只能烙兩張餅,每面3分鐘。提出問題:“怎樣才能盡快吃到餅?”其中“為什么烙2張餅和1張餅都用6分鐘?”為本題關鍵信息。教師創設情境:媽媽邀請李阿姨做客,請小明沏茶。提出問題:“小明怎樣能盡快讓客人喝到茶?”學生討論發言,分享觀點。在閱讀教材后,學生都能理解“在xx的時候還可以xx”,區別在于是否能達到“所用時間最少”的目的。學生經過討論后達成一致,甚至總結出解決“沏茶問題”的方法。上述教學過程結合了學生的已有經驗,從生活情境中抽象出數學問題。通過學生探究,在實際生活場景與數學元素間建立聯系,促進學生理解知識的由來。數學的抽象性表現在概括同類事物的共同特征和本質屬性上,知識的來源是對實際事物的抽象概括。因此,學生要在問題情境中抽象出數學知識,再梳理數學知識的邏輯,掌握知識,最后應用知識。

3.2基于數學模型意識培養的教學設計

小學階段培養的模型思想和相應的建模能力只是初步的,在模型建構的過程中,教師要注重激發學生學習數學的興趣。模型思想在小學數學中有多方面體現,它更注重數學應用,通過建立數學模型解決實際問題。小學四年級下冊“數學廣角”提出了“雞兔同籠”問題,解決此類問題要求學生理解假設法和列表法。首先,教師講述《孫子算經》中“雞兔同籠”的故事,再將故事中的數化為例題1中較小的數進行計算,讓學生體會化繁為簡思想。其次,學生閱讀教材,分小組討論并填寫表格,再分享討論過程,尋找規律:雞和兔的只數與腿的數量的關系。再次,引導學生用畫圖法理解為什么多出來的腿數要兩兩分開,學生自行探索和總結規律,結合教材示例的“假設法”和閱讀資料中的“抬腿法”理解這類問題,再用計算的方式探究解決問題的辦法。最后遷移至其他問題。上述教學通過介紹“雞兔同籠”的故事,使學生了解數學家認識問題的過程。模型思想可以幫助學生理解數學與實際的聯系,模型來源于生活案例,通過對案例的分析提出相應的數學問題,在解決問題的過程中建立相應的模型。模型思想是小學數學的重要內容,通過分析、梳理問題找到問題的共同結構和特征,再建立數學模型,運用模型解決此類問題。

4結語

“數學廣角”在數學教材中屬于綜合與實踐性內容,教師在進行教學設計時要先分析教材,將教學內容整合成一系列問題,梳理問題后結合教學內容開展教學。整個教學過程以學生為主體,注重自主探究和問題解決。學生在課堂中扮演更加重要的角色,教師只是學生探索的引導者,在教學過程中設置情境,融入數學史知識,鼓勵學生探究、總結規律,尋找新的解題方法,培養學生的數學素養。

參考文獻

[1]劉久成.學科任務導向的小學數學核心素養及其要素[J].小學教學研究,2017(8):59-62.

[2]王永春.小學數學與數學思想方法[M].上海:華東師范大學出版社,2014:3-4.

[3]李星云.論小學數學核心素養的構建:基于PISA2012的視角[J].課程•教材•教法,2016(5):72-78.

[4]魯杰峰,馬文杰.論“數學抽象”的基本特征[J].數學通訊,2019(2):1-5.

作者:楊靜 單位:喀什大學教育科學學院

亚洲精品一二三区-久久