前言:尋找寫作靈感?中文期刊網用心挑選的BP神經網絡工程造價論文,希望能為您的閱讀和創作帶來靈感,歡迎大家閱讀并分享。
1工程造價的模型
1.1采用計算機模擬技術建立模擬模型
對bp神經網絡模擬模型建立的基礎,人們是這樣認為的,因為影響工程造價的因素,大多數人們都是沒辦法確定的,所以我們不需要把這個值具體是多少確定下來,而是從另一個方面考慮,根據這個項目的基本情況,估計實際的造價落在某個范圍的機會會大一些,這個思想就是計算機模擬技術建立模擬模型的理論基礎。
1.2人工智能模型
工程造價估算專家系統,是通過人工智能,加上知識庫技術而建立起來的,可是這種人工智能模型主要靠專家的知識,來對工程造價進行估計計算的,但是估算的結果是被估算人員的主觀意識所影響的,不同專家的性格,知識面的寬窄,經驗豐富與否、都是不確定因素,幾乎可以會所不一樣的估算專家所得出的結果都不會一樣。這種方法很容易帶有個人偏見和片面性。受專家的主觀偏見性較強。
2BP神經網絡模型構造與算法
2.1人工神經網絡的基本原理
1985,D•E•Rumelhart等人組成的PDP小組提出的一種神經網絡模型,這就是我們今天所說的BP神經網絡,BP神經網絡結構是利用誤差反向傳播來消除誤差的,它有三個層次,有一個輸入層,第二個是隱層,最后一個當然就是輸出層。在訓練估算中,我們可以通過計算輸出值和我們預期的期望值,他們之間所產生的誤差,逆向思維,去求解輸出層單元的一般化誤差,然后再把誤差進行反向傳播,把隱含層單元的一般化誤差求解出來,并最終調整輸出層和隱含層,包括輸入層之間的連接權,還有連接權與隱含層和輸出層的閾值,最終目的就是讓系統誤差達到我們可以接受為止。當先前的系統誤差達到我們所需求的時候,權值和閾值就變成了固定不變的了,這樣我們再通過反向逆推,就可以測出我們這個項目的未知信息。這就是人工神經網絡的基本原理。
2.2BP神經網絡模型建立的步驟
(1)我們首先確定模型輸入層,隱含層還有輸出層的神經元個數。并且以此為依據,確定BP神經網絡模型的結構參數;(2)神經網絡只能處理-l~l之間的數據,所以在輸入網絡時,我們不僅需要對原始數據進行規范化處理,還要對隱含單元和各個單元輸入信息進行求和;通過反向逆推之后得到本單元的輸入信息。所以對原始數據,隱含單元輸入模塊規范化細致化是非常重要的;(3)隱含單元的輸出值可以根據神經網絡操作模型得出,只要我們把net信號經過一次激發函數的處理,可以得到這個隱含單元的輸出值;(4)對于輸出單元節點,我們只要對前一層的隱含層單元輸入信息,并且加權求和后,就能得到該單元的輸入信息。操作起來非常方便快捷;(5)對權矩陣的調整,因為人工神經網絡可以近似實現任意空間的數學映射。所以我們假設,如果神經網絡輸入單元數為M,輸出單元為N,則在m維歐式空間尺中會有一個有界子集A,存在著一個到n維歐式空間,那么R中一個有界子集F(A)的映射。
3基于BP神經網絡的工程造價估算模型
3.1定量化描述工程特征的因素
什么是工程特征,在BP神經網絡中所說工程特征,就是指不但能表示工程特點,而且還能反映工程的主要成本構成的重要因素。,我們可以通過參照歷史工程資料的統計和分析,進行工程特征的選取工作。選取完成之后,再根據專家的經驗來確定,這樣就可以萬無一失了。首先我們可以通過典型住宅工程的造價組成進行分析,然后對建筑結構參數的變化和別的工程做一下對比,通過以上兩點得出的結果,分析這些因素對造價的影響,依照以上的理論方法,我們進行了實踐性的研究,最終把礎類型,結構形式,建筑層數,門窗類型,外墻裝飾還有墻體材料以及平面組合等,這7種因素作為工程的主要特征。不同的建筑工程有著不同的類型,比如說結構,可以是磚混結構和框架結構等;磚條基和鋼筋砼條基礎等都可以作為基礎特征,對于這樣的特征選取的多樣性我們稱之為特征類目,通過工程特征不同類目的列舉,再跟據定額水平,工程特征對造價影響的相關性,這些對平方米造價的改變,對工程定量化的描述可以主觀的給出對應的量化數據。
3.2建立估價模型
工程造價估算的指標體系到該項目的單位造價的非線性映射,就可以統稱為是建設項目工程造價的估算問題。BP網絡可以根據人們的需求以任意的精度去逼近任意映射關系,究其原因就是上文說的BP網絡采用的是三層BP神經網絡結構,不同于其他的電腦估算網絡。不僅是因為該模型的輸入單元為7個,還有他們的項目樣本特征也不盡相同。神經網絡可以根據已經經過我們優選的模型特征,做為參考估算要素,然后再通過項目工程造價估算中,我們所提供的一定數量的已知樣本,采取對樣本的神經網絡訓練,最后根據以往的大的數據庫,提取類似的項目估算值,然后才能對其它特征的項目進行估算。這樣我們只需要輸入指標體系的各指標值,BP神經網絡就可以在該項目的單位造價的非線性映射中給出該項目的單位造價。
3.3檢測結果的分析
上面我們通過大量的實際實驗得知了這兩個固定不變的數字,然后我們可以用程序值被收斂后的網絡,對現在要進行求解的數據進行檢測,在測試后,如果發現總體誤差比率較小,那么就滿足我們初步設計的概算需求了,同時對工程可行性研究的投資估算需求也已經基本符合了,這些結果能有好的保證,全是依賴我們所選擇的模型的寬度夠用,模型在所有的因素中具有廣泛的代表性。所以估價模型的計算才較為成功。幾個工程估算的好壞也不能代表所有的項目都是完美的,也有個別工程造價估算誤差大,因為電腦畢竟是人在給其輸入程序,電腦的經驗,還有就是對一些特征的學習不夠用,本身的知識儲備還是有局限性的。因為對樣本數量的學習始終是有限,不可能面面俱到,而且挑選的樣本也不可能針對這個工程而言都是符合這個項目的特性。雖然說BP神經網絡模型有這樣無法控制的缺點,但是和其他的造價估算模型相比,BP神經網絡模型的優點還是可圈可點的,其優點和其他的造價模型相比較優點還是非常明顯的。在以后的估算中,隨著樣本的不斷充實,數據的不斷積累,經驗的不但豐富,其估算的誤差也將不斷縮小,這些方面的補充,在以后的估算中,必定會取得非常完美的成績。
4總結
因為企業如果采用神經網絡估算,就需要進行大量的樣本來訓練網絡,所以在工程特征的向量選取,還有訓練樣本的選擇上,神經網絡模型還有待進一步完善和提高,現代經濟經濟的發展,神經網絡模型在現代經濟非線性領域的應用前景非常廣闊,所以我們要堅定不移的繼續向前走,爭取讓神經網絡模型在中國的發展更上一層樓。
作者:余劍 單位:安徽眾望工程技術咨詢有限責任公司